搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试

刘励强 苏伟伦 刘峻铭 邹娱 洪丽红 李志远

引用本文:
Citation:

应用于1064 nm倍频实验的啁啾周期极化铌酸锂晶体的结构设计与角度鲁棒性测试

刘励强, 苏伟伦, 刘峻铭, 邹娱, 洪丽红, 李志远

Design and angular robustness test of chirped periodically poled lithium niobate crystal for 1064 nm second-harmonic generation experiment

Liu Li-Qiang, Su Wei-Lun, Liu Jun-Ming, Zou Yu, Hong Li-Hong, Li Zhi-Yuan
PDF
HTML
导出引用
  • 通过倍频技术产生的532 nm固体激光器是目前应用最广泛的激光器之一, 其最常用的倍频晶体三硼酸锂(LBO)在角度鲁棒性与倍频效率上仍有不足. 为获得具有较好的角度鲁棒性的倍频晶体, 实现激光器结构复杂度的降低与稳定性的提升, 本文从角度鲁棒性的理论分析出发, 对啁啾周期极化铌酸锂(CPPLN)晶体的结构进行设计, 并对其进行理论仿真与实验测试. 模拟仿真的结果表明, 该设计结构的CPPLN晶体具有良好的角度鲁棒性, 在$ - {3^ \circ } $$ + {3^ \circ } $的范围内倍频效率一直维持在最高倍频效率的60%以上. 倍频实验的结果显示可以达到LBO晶体的11倍以上. 同时CPPLN晶体的倍频光功率关于入射角度的半高宽可以达到$ {6^ \circ } $以上, 并且出射光斑为标准的高斯光斑, 几乎不受入射角度的影响. 研究表明, CPPLN晶体具有远高于LBO晶体的倍频效率, 且角度鲁棒性优于LBO晶体的角度鲁棒性.
    A 532-nm solid-state laser, generated by second-harmonic generation (SHG) technology, has become one of the most extensively used lasers in various applications today. In the traditional scheme, the most prevalent SHG crystal of the 532-nm solid-state is lithium borate (LBO), and continues to exhibit insufficient angular robustness and SHG efficiency. In order to overcome these limitations and obtain SHG crystals with better angular robustness, this study starts with a comprehensive theoretical analysis of angular robustness. On this basis, the structure of a chirped periodically poled lithium niobate (CPPLN) crystal is designed by taking into account the desired properties for improving its performance, and then the theoretical simulations and experimental tests are implemented to validate the effectiveness of the designed crystal. The simulation results corroborate the superior angular robustness of the CPPLN crystal. In a range from $ - {3^ \circ } $ to $ + {3^ \circ } $, the designed CPPLN crystal exhibits a maximum SHG efficiency of 0.80% and a minimum one of 0.51%, which indicates that the SHG efficiency of this crystal in this range can be maintained at 60% of the maximum efficiency. The experimental results show that the SHG efficiency can be more than 11 times that of LBO crystal. Moreover, the study indicates that the half width of the actual SHG efficiency near the incident angle of the designed CPPLN crystal can exceed $ {6^ \circ } $, demonstrating its excellent tolerance for changes in incident angle. Furthermore, the output spot of the SHG light generated by the designed CPPLN crystal exhibits a standard Gaussian profile, which remains virtually unaffected by the incident angle. In summary, the findings of this research highlight the CPPLN crystal as a promising alternative to LBO, with markedly higher SHG efficiency and better angular robustness. These superior characteristics make the CPPLN crystal a highly attractive candidate for a wide range of laser applications.
      通信作者: 李志远, phzyli@scut.edu.cn
      Corresponding author: Li Zhi-Yuan, phzyli@scut.edu.cn
    [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 1 7 118Google Scholar

    [2]

    Sharma A, Jain V, Gupta D 2018 Measurement 128 254Google Scholar

    [3]

    Kartopu G, Oklobia O, Tansel T, Jones S, Irvine S J 2023 Solar Energy Mater. Sol. Cells 251 112112Google Scholar

    [4]

    彭亚军, 黄颖 2023 江西医药 58 977Google Scholar

    Peng Y J, Huang Y 2023 Jiangxi Med. J. 58 977Google Scholar

    [5]

    刘宇欢, 陈建伟, 杨洲 2023 糖尿病新世界 26 172

    Liu Y H, Chen J Y, Yang Z 2023 Diabetes New World 26 172

    [6]

    Penide G, Szczap F, Delanoë J 2024 AIP Conference Proceedings 2988 030004

    [7]

    Studinger M, Smith B E, Kurtz N, Petty A, Sutterley T, Tilling R 2023 The Cryosphere Discussions 2023 1

    [8]

    Wang X K, Zhou Z Y, Li M D, Zheng Y G, Zhang W Y, Su G X 2022 Rev. Sci. Instrum. 93 123002Google Scholar

    [9]

    Li D, Yan B, Yuan Y, Cai Y, Hao Z, Li J 2024 J. Lightwave Technol. 2024 1

    [10]

    Li F, Zhang X, Li J, Wang J, Shi S, Tian L, Wang Y, Chen L, Zheng Y 2023 Front. Phys. 18 42303Google Scholar

    [11]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [12]

    Ramesh K S, Munusamy S, Saravanakumar M, Manigandan S, Muthusamy K, Vinitha G, Sekar M 2024 J. Mater. Sci.-Mater. Electron. 35 329Google Scholar

    [13]

    李天胤, 邢宏喜, 张旦波 2023 物理学报 72 200303Google Scholar

    Li T Y, Xing H X, Zhang D B 2023 Acta Phys. Sin. 72 200303Google Scholar

    [14]

    Ganeev R A 2023 Photonics 10 854Google Scholar

    [15]

    Seres E, Seres J, Martinez-de-Olcoz L, Schumm T 2024 Opt. Express 32 17593Google Scholar

    [16]

    Li M, Hong L, Li Z Y 2022 Research 2022 1Google Scholar

    [17]

    Hong L, Chen B, Hu C, Li Z Y 2022 Photonics Research 10 905Google Scholar

    [18]

    Hong L, Hu C, Liu Y, He H, Liu L, Wei Z, Li Z Y 2023 PhotoniX 4 1Google Scholar

    [19]

    Hong L, Yang H, Liu L, Li M, Liu Y Chen B, Yu H, Ju W, Li Z Y 2023 Research 6 0210Google Scholar

    [20]

    Martin K I, Clarkson W A, Hanna D C 1997 Appl. Opt. 36 4149Google Scholar

    [21]

    Zhang C, Lu H, Yin Q, Su J 2014 Appl. Opt. 53 6371Google Scholar

    [22]

    Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [23]

    Yamada M, Nada N, Saitoh M, Watanabe K 1993 Appl. Phys. Lett. 62 435Google Scholar

    [24]

    Sakai K, Koyata Y, Itakura S, Hirano Y 2009 J. Lightwave Technol. 27 590Google Scholar

    [25]

    Kang Y, Yang S, Brunel M, Cheng L, Zhao C, Zhang H 2017 Appl. Opt. 56 2968Google Scholar

    [26]

    Lai J Y, Hsu C S, Hsu C W, Wu D Y, Wu K, Chou M H 2019 Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII 10902 8

    [27]

    Peng L, Hong L, Li Z 2021 Phys. Rev. A 104 053503Google Scholar

  • 图 1  设计的CPPLN的倍频效率与入射角度的关系图

    Fig. 1.  The relationship between the SHG efficiency of the designed CPPLN and the incidence angle.

    图 2  倍频实验相关图 (a) 装置示意图; (b) 1064 nm激光器输出光斑图像

    Fig. 2.  Correlation diagram of frequency doubling experiment: (a) Schematic diagram of the installation; (b) output spot image of 1064 nm laser.

    图 3  倍频实验结果对比 (a) CPPLN; (b) LBO, 入射角变化方向平行于偏振方向; (c) LBO, 入射角变化方向垂直于偏振方向

    Fig. 3.  Comparison of SHG experiment results: (a) CPPLN; (b) LBO, the angle of incidence changes in a direction parallel to the direction of polarization; (c) LBO, the angle of incidence changes in a direction perpendicular to the direction of polarization.

    图 4  角度鲁棒性实验结果 (a) CPPLN; (b) LBO, 入射角变化方向平行于偏振方向; (c) LBO, 入射角变化方向垂直于偏振方向

    Fig. 4.  Results of the angular robustness experiment: (a) CPPLN; (b) LBO, the angle of incidence changes in a direction parallel to the direction of polarization; (c) LBO, the angle of incidence changes in a direction perpendicular to the direction of polarization.

    图 5  CPPLN与LBO倍频实验输出光斑对比 (a), (b), (c), (d) CPPLN 分别在$ - {1^ \circ } $, $ {0^ \circ } $, $ + {1^ \circ } $和$ + {2^ \circ } $条件下的光斑; (e) , (f), (g), (h) 当角度在平行于偏振方向上变化时, LBO 分别在$ - {1^ \circ } $, $ {0^ \circ } $, $ + {1^ \circ } $和$ + {2^ \circ } $条件下的光斑; (i), (j), (k), (l) 当角度在垂直于偏振方向上变化时, LBO 分别在$ - {0.3^ \circ } $, $ {0^ \circ } $, $ + {0.3^ \circ } $和$ + {0.6^ \circ } $条件下的光斑

    Fig. 5.  Comparison of output light spots between CPPLN and LBO SHG experiments: (a), (b), (c) (d) The output spots of CPPLN at $ - {1^ \circ } $, $ {0^ \circ } $, $ + {1^ \circ } $和$ + {2^ \circ } $, respectively; (e), (f), (g), (h) the output spots of LBO when the angle changes parallel to the direction of polarization under conditions of $ - {1^ \circ } $, $ {0^ \circ } $, $ + {1^ \circ } $和$ + {2^ \circ } $ respectively; (i), (j), (k), (l) the output spots of LBO when the angle changes perpendicular to the direction of polarization under conditions of $ - {0.3^ \circ } $, $ {0^ \circ } $, $ + {0.3^ \circ } $和$ + {0.6^ \circ } $, respectively.

    图 6  CPPLN光斑强度分布拟合曲线 (a) $ - {1^ \circ } $; (b) $ {0^ \circ } $; (c) $ + {1^ \circ } $; (d) $ + {2^ \circ } $

    Fig. 6.  CPPLN output spot intensity distribution fitting curve: (a) $ - {1^ \circ } $; (b) $ {0^ \circ } $; (c) $ + {1^ \circ } $; (d) $ + {2^ \circ } $.

  • [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 1 7 118Google Scholar

    [2]

    Sharma A, Jain V, Gupta D 2018 Measurement 128 254Google Scholar

    [3]

    Kartopu G, Oklobia O, Tansel T, Jones S, Irvine S J 2023 Solar Energy Mater. Sol. Cells 251 112112Google Scholar

    [4]

    彭亚军, 黄颖 2023 江西医药 58 977Google Scholar

    Peng Y J, Huang Y 2023 Jiangxi Med. J. 58 977Google Scholar

    [5]

    刘宇欢, 陈建伟, 杨洲 2023 糖尿病新世界 26 172

    Liu Y H, Chen J Y, Yang Z 2023 Diabetes New World 26 172

    [6]

    Penide G, Szczap F, Delanoë J 2024 AIP Conference Proceedings 2988 030004

    [7]

    Studinger M, Smith B E, Kurtz N, Petty A, Sutterley T, Tilling R 2023 The Cryosphere Discussions 2023 1

    [8]

    Wang X K, Zhou Z Y, Li M D, Zheng Y G, Zhang W Y, Su G X 2022 Rev. Sci. Instrum. 93 123002Google Scholar

    [9]

    Li D, Yan B, Yuan Y, Cai Y, Hao Z, Li J 2024 J. Lightwave Technol. 2024 1

    [10]

    Li F, Zhang X, Li J, Wang J, Shi S, Tian L, Wang Y, Chen L, Zheng Y 2023 Front. Phys. 18 42303Google Scholar

    [11]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 物理学报 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [12]

    Ramesh K S, Munusamy S, Saravanakumar M, Manigandan S, Muthusamy K, Vinitha G, Sekar M 2024 J. Mater. Sci.-Mater. Electron. 35 329Google Scholar

    [13]

    李天胤, 邢宏喜, 张旦波 2023 物理学报 72 200303Google Scholar

    Li T Y, Xing H X, Zhang D B 2023 Acta Phys. Sin. 72 200303Google Scholar

    [14]

    Ganeev R A 2023 Photonics 10 854Google Scholar

    [15]

    Seres E, Seres J, Martinez-de-Olcoz L, Schumm T 2024 Opt. Express 32 17593Google Scholar

    [16]

    Li M, Hong L, Li Z Y 2022 Research 2022 1Google Scholar

    [17]

    Hong L, Chen B, Hu C, Li Z Y 2022 Photonics Research 10 905Google Scholar

    [18]

    Hong L, Hu C, Liu Y, He H, Liu L, Wei Z, Li Z Y 2023 PhotoniX 4 1Google Scholar

    [19]

    Hong L, Yang H, Liu L, Li M, Liu Y Chen B, Yu H, Ju W, Li Z Y 2023 Research 6 0210Google Scholar

    [20]

    Martin K I, Clarkson W A, Hanna D C 1997 Appl. Opt. 36 4149Google Scholar

    [21]

    Zhang C, Lu H, Yin Q, Su J 2014 Appl. Opt. 53 6371Google Scholar

    [22]

    Armstrong J A, Bloembergen N, Docuing J, Pershan P S 1962 Phys. Rev. 127 1918Google Scholar

    [23]

    Yamada M, Nada N, Saitoh M, Watanabe K 1993 Appl. Phys. Lett. 62 435Google Scholar

    [24]

    Sakai K, Koyata Y, Itakura S, Hirano Y 2009 J. Lightwave Technol. 27 590Google Scholar

    [25]

    Kang Y, Yang S, Brunel M, Cheng L, Zhao C, Zhang H 2017 Appl. Opt. 56 2968Google Scholar

    [26]

    Lai J Y, Hsu C S, Hsu C W, Wu D Y, Wu K, Chou M H 2019 Nonlinear Frequency Generation and Conversion: Materials and Devices XVIII 10902 8

    [27]

    Peng L, Hong L, Li Z 2021 Phys. Rev. A 104 053503Google Scholar

  • [1] 高荣, 杨亚楠, 湛晨翌, 张宗祯, 邓宜, 王子潇, 梁坤, 冯素春. 基于双频泵浦正常色散碳化硅微环谐振腔的光频率梳设计. 物理学报, 2024, 73(3): 034203. doi: 10.7498/aps.73.20231442
    [2] 石凉竹, 张萌, 储玉喜, 刘博文, 胡明列. 光纤飞秒激光五倍频产生206 nm深紫外激光. 物理学报, 2023, 72(22): 224209. doi: 10.7498/aps.72.20230877
    [3] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [4] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟. 物理学报, 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [5] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [6] 刘鹏翔, 李伟, 郭丽媛, 祁峰, 庞子博, 李惟帆, 汪业龙, 刘朝阳. 基于有机吡啶盐晶体的太赫兹频率上转换探测. 物理学报, 2021, 70(5): 050701. doi: 10.7498/aps.70.20201908
    [7] 尚玲玲, 钱轩, 孙天娇, 姬扬. 超快光脉冲照射GaAs晶体产生的干涉环. 物理学报, 2020, 69(21): 214202. doi: 10.7498/aps.69.20201055
    [8] 李庚霖, 贾曰辰, 陈峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展. 物理学报, 2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
    [9] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [10] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [11] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [12] 张洋, 李婷, 袁晓东, 熊召, 徐旭, 叶朗, 周海, 张彬. KDP晶体相位匹配角理论预测模型及其验证分析. 物理学报, 2015, 64(2): 024213. doi: 10.7498/aps.64.024213
    [13] 陈卫军, 卢克清, 惠娟利, 王春香, 于会敏, 胡凯. LiNbO3晶体界面非线性表面波的研究. 物理学报, 2015, 64(1): 014204. doi: 10.7498/aps.64.014204
    [14] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [15] 季来林, 朱宝强, 詹廷宇, 戴亚平, 朱检, 马伟新, 林尊琪. 大口径高通量三倍频研究. 物理学报, 2011, 60(9): 094210. doi: 10.7498/aps.60.094210
    [16] 孙博, 刘劲松, 凌福日, 王可嘉, 朱大庆, 姚建铨. 基于钽酸锂晶体的太赫兹波参量振荡器运转特性的研究. 物理学报, 2009, 58(3): 1745-1751. doi: 10.7498/aps.58.1745
    [17] 王 磊, 胡慧芳, 韦建卫, 曾 晖, 于滢潆, 王志勇, 张丽娟. 有机分子二苯乙烯系列衍生物第一超极化率的理论研究. 物理学报, 2008, 57(5): 2987-2993. doi: 10.7498/aps.57.2987
    [18] 杨义胜, 郑万国, 韩 伟, 车雅良, 谭吉春, 向 勇, 贾怀庭. 宽带三倍频混频过程的群速匹配关系. 物理学报, 2007, 56(11): 6468-6472. doi: 10.7498/aps.56.6468
    [19] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性. 物理学报, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [20] 郝中华, 刘劲松. 无偏压的串联光折变晶体回路中高斯光束传播特性调节. 物理学报, 2002, 51(12): 2772-2777. doi: 10.7498/aps.51.2772
计量
  • 文章访问数:  1153
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-31
  • 修回日期:  2024-07-12
  • 上网日期:  2024-08-07
  • 刊出日期:  2024-09-05

/

返回文章
返回