-
To meet the increasing demand of integrated photonic device design, a LiNbO3/Na surface plasmonic waveguide (LNSPW) is demonstrated, and a directional coupler (DC) based on the LNSPW is also studied. The mode characteristics of the LNSPW and the coupling performances of the DC are simulated by the finite element method (FEM). There are four modes in the LNSPW when its width (w1) and the thickness (h1) are less than 600 nm and 400 nm, respectively. The number of the modes in the LNSPW increases with waveguide size increasing. To achieve the single-mode propagation, w1 and h1 are chosen to be 300 nm and 200 nm, respectively. The effective refractive index (neff), propagation length (Lp), and normalized effective mode area (Aeff/A0) are analyzed with different dimensional parameters of the LNSPW. The value of Lp is ~200 μm, and Aeff/A0 is less than 0.4. In order to demonstrate the electro-optic tunable performance, the normalized output power (Pnorm) values of the DC are calculated based on the LNSPWs with different values of coupling interval (Wgap), coupling length (LC), and operating wavlength (λ). The Pnorm values of the output ports (port 2 and port 3) vary with Wgap and LC. Owing to the electro-optic effect of LiNbO3 (LN), Pnorm of the DC can be adjusted by changing the applied electrostatic voltage (V0). The influence of V0 on Pnorm increases when Wgap is larger than 100 nm and LC is greater than 12 μm. The larger the value of LC and Wgap, the stronger the effect of V0 on Pnorm is, but Pnorm values from two output ports decrease with Wgap and LC increasing. A 3 dB coupler can be achieved by changing V0 to 53 V when Wgap = ~100 nm, LC = ~17 μm, and λ = 1.55 μm, and has good directivity and isolation. The LNSPW provides a feasible scheme to realize the tunable DC, and has potential applications in integratable electro-optic tuanble devices, nonlinear optics, optical signal processing, and optical holographic storage.
-
Keywords:
- LiNbO3 waveguide /
- electro-optical device /
- surface plasmonic /
- directional coupler
[1] Zhang Q, Li M, Xu J, Lin Z J, Yu H F, Wang M, Fang Z W, Cheng Y, Gong Q H, Li Y 2019 Photonics Res. 7 503Google Scholar
[2] 刘时杰, 郑远林, 陈险峰 2021 光学学报 41 0823013Google Scholar
Liu S J, Zheng Y L, Chen X F 2021 Acta Opt. Sin. 41 0823013Google Scholar
[3] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar
[4] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar
[5] Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V 2009 Laser Photonics Rev. 3 301Google Scholar
[6] 李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar
Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar
[7] Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar
[8] Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A, Bakhru H 1998 Appl. Phys. Lett. 73 2293Google Scholar
[9] Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M 2014 Opt. Express 22 30924Google Scholar
[10] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar
[11] Lin J T, Xu Y X, Fang Z W, Wang M, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar
[12] Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar
[13] 乔玲玲, 汪旻, 伍荣波, 方致伟, 林锦添, 储蔚, 程亚 2021 光学学报 41 0823012Google Scholar
Qiao L L, Wang M, Wu R B, Fang Z W, Lin J T, Chu W, Cheng Y 2021 Acta Opt. Sin. 41 0823012Google Scholar
[14] Wu R B, Wang M, Xu J, Qi J, Chu W, Fang Z W, Zhang J H, Zhou J X, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Nanomaterials 8 910Google Scholar
[15] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar
[16] Jia Y C, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar
[17] Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar
[18] Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar
[19] Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar
[20] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar
[21] Prucha E J, Palik E D 1998 Handbook of Optical Constants of Solids II (London: Academic Press) p354
[22] Wang Y, Yu J Y, Mao Y F, Chen J, Wang S, Chen H Z, Zhang Y, Wang S Y, Chen X J, Li T, Zhou L, Ma R M, Zhu S N, Cai W S, Zhu J 2020 Nature 581 401Google Scholar
[23] Tsilipakos O, Yioultsis T V, Kriezis E E 2009 J. Hazard Mater. 106 93109
[24] Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F, Hwang C S 2020 Nat. Mater. 19 1188Google Scholar
-
-
[1] Zhang Q, Li M, Xu J, Lin Z J, Yu H F, Wang M, Fang Z W, Cheng Y, Gong Q H, Li Y 2019 Photonics Res. 7 503Google Scholar
[2] 刘时杰, 郑远林, 陈险峰 2021 光学学报 41 0823013Google Scholar
Liu S J, Zheng Y L, Chen X F 2021 Acta Opt. Sin. 41 0823013Google Scholar
[3] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar
[4] Kues M, Reimer C, Roztocki P, Cortés L R, Sciara S, Wetzel B, Zhang Y B, Cino A, Chu S T, Little B E, Moss D J, Caspani L, Azaña J, Morandotti R 2017 Nature 546 622Google Scholar
[5] Janner D, Tulli D, García-Granda M, Belmonte M, Pruneri V 2009 Laser Photonics Rev. 3 301Google Scholar
[6] 李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar
Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar
[7] Poberaj G, Hu H, Sohler W, Günter P 2012 Laser Photonics Rev. 6 488Google Scholar
[8] Levy M, Osgood R M, Liu R, Cross L E, Cargill G S, Kumar A, Bakhru H 1998 Appl. Phys. Lett. 73 2293Google Scholar
[9] Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M 2014 Opt. Express 22 30924Google Scholar
[10] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar
[11] Lin J T, Xu Y X, Fang Z W, Wang M, Wang N W, Qiao L L, Fang W, Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209Google Scholar
[12] Wu R B, Zhang J H, Yao N, Fang W, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Opt. Lett. 43 4116Google Scholar
[13] 乔玲玲, 汪旻, 伍荣波, 方致伟, 林锦添, 储蔚, 程亚 2021 光学学报 41 0823012Google Scholar
Qiao L L, Wang M, Wu R B, Fang Z W, Lin J T, Chu W, Cheng Y 2021 Acta Opt. Sin. 41 0823012Google Scholar
[14] Wu R B, Wang M, Xu J, Qi J, Chu W, Fang Z W, Zhang J H, Zhou J X, Qiao L L, Chai Z F, Lin J T, Cheng Y 2018 Nanomaterials 8 910Google Scholar
[15] Lin J T, Yao N, Hao Z Z, Zhang J H, Mao W B, Wang M, Chu W, Wu R B, Fang Z W, Qiao L L, Fang W, Bo F, Cheng Y 2019 Phys. Rev. Lett. 122 173903Google Scholar
[16] Jia Y C, Wang L, Chen F 2021 Appl. Phys. Rev. 8 011307Google Scholar
[17] Yang L K, Li P, Wang H C, Li Z P 2018 Chin. Phys. B 27 094216Google Scholar
[18] Boltasseva A, Atwater H A 2011 Science 331 290Google Scholar
[19] Khurgin J B 2015 Nat. Nanotechnol. 10 2Google Scholar
[20] Naik G V, Shalaev V M, Boltasseva A 2013 Adv. Mater. 25 3264Google Scholar
[21] Prucha E J, Palik E D 1998 Handbook of Optical Constants of Solids II (London: Academic Press) p354
[22] Wang Y, Yu J Y, Mao Y F, Chen J, Wang S, Chen H Z, Zhang Y, Wang S Y, Chen X J, Li T, Zhou L, Ma R M, Zhu S N, Cai W S, Zhu J 2020 Nature 581 401Google Scholar
[23] Tsilipakos O, Yioultsis T V, Kriezis E E 2009 J. Hazard Mater. 106 93109
[24] Jiang A Q, Geng W P, Lv P, Hong J W, Jiang J, Wang C, Chai X J, Lian J W, Zhang Y, Huang R, Zhang D W, Scott J F, Hwang C S 2020 Nat. Mater. 19 1188Google Scholar
Catalog
Metrics
- Abstract views: 4402
- PDF Downloads: 115
- Cited By: 0