Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Miniaturization of physics system in Sr optical clock

Zhao Fang-Jing Gao Feng Han Jian-Xin Zhou Chi-Hua Meng Jun-Wei Wang Ye-Bing Guo Yang Zhang Shou-Gang Chang Hong

Citation:

Miniaturization of physics system in Sr optical clock

Zhao Fang-Jing, Gao Feng, Han Jian-Xin, Zhou Chi-Hua, Meng Jun-Wei, Wang Ye-Bing, Guo Yang, Zhang Shou-Gang, Chang Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The compactness and robustness of the vacuum setup are the major limitations to develop transportable and space-borne optical clocks. The first step in the engineering challenge is to reduce volume and weight with respect to a stationary system. In this paper, we present the realization of a miniaturized vacuum system by building two anti-Helmholtz coils inside the vacuum magneto-optical-trap (MOT) chamber. The built-in coils are specially designed to minimize the distance between the coils, and in this way it is possible to reduce the current needed to realize a typical magnetic gradient of 40 Gs/cm required for blue MOT. When the MOT coil current is 2 A, an axial magnetic field gradient of 43 Gs/cm is obtained in the center of the MOT, which is enough for the first stage Doppler cooling. This novel design allows us to reduce size, weight and power consumption with respect to a traditional laser cooling apparatus, and simultaneously avoid complicating the water cooling equipment. Our vacuum system has a size of 60 cm×20 cm×15 cm, about 1/10 of the original system in the laboratory. In addition, the circularly polarized Zeeman slowing laser is sent to counter propagating atomic beam, and atoms at a few hundred meters per second are now routinely slowed down to velocities of tens of meters per second. As a result, about 16.4% of the atoms are actually trapped into the blue MOT. The final temperature of the blue MOT is approximately 10.6 mK, and the internal diameter is 1.5 mm by observing the expansion of the atoms from the MOT. The populations of cold atoms finally trapped in the MOT are 1.6×106 of 88Sr and 1.5×105 of 87Sr. The 1S0 → 1P1 transition used for the blue MOT is not perfectly closed due to the decay channel of the 5p1P1 → 4d1D2, and a part of atoms are stored in the 3P2 and 3P0 states. To prevent the atoms from losing, 707 and 679 nm repumping lasers are employed to recycle these atoms in the 3P1 state, and then the atoms decay to the ground state 1S0. Now the typical number of loaded atoms dramatically increases by 5 times compared with before. The slowing efficiency of Zeeman slower is also optimized for the operation with deceleration related to the parameter of magnet length, which uses more effectively available magnetic field distribution, in contrast to the usual constant deceleration mode. Our future work will focus on constructing a Zeeman slower combined with permanent magnets or an electric magnet for better tuning of the magnetic field.
      Corresponding author: Gao Feng, summit_gao@ntsc.ac.cn;changhong@ntsc.ac.cn ; Chang Hong, summit_gao@ntsc.ac.cn;changhong@ntsc.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11603030), the National Natural Science Foundation of China (Grant Nos. 11474282, 61775220), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030700), and the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004).
    [1]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [2]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2109

    [3]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photon. 10 662

    [4]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [5]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [6]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [7]

    Hachisu H, Ido T 2015 Jpn. J. Appl. Phys. 54 112401

    [8]

    Akamatsu D, Inaba H, Hosaka K, Yasuda M, Onae A, Suzuyama T, Amemiya M, Hong F L 2014 Appl. Phys. Express 7 012401

    [9]

    Schiller S, Görlitz A, Nevsky A, Koelemeij J C J, Wicht A, Gill P, Klein H A, Margolis H S, Mileti G, Sterr U, Riehle F, Peik E, Tamm C, Ertmer W, Rasel E, Klein V, Salomon C, Tino G M, Lemonde P, Holzwarth R, Hänsch T W 2007 Nucl. Phys. B 166 300

    [10]

    Salomon Ch, Dimarcq N, Abgrall M, Clairon A, Laurent P, Lemonde P, Santarelli G, Uhrich P, Bernier L G, Busca G, Jornod A, Thomann P, Samain E, Wolf P, Gonzalez F, Guillemot Ph, Leon S, Nouel F, Sirmain Ch, Feltham S 2001 C. R. Phys. 2 1313

    [11]

    Cacciapuoti L, Salomon C 2009 Eur. Phys. J. Special Topics 172 57

    [12]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801

    [13]

    Fortier T M, Ashby N, Bergquist J C, Delaney M J, Diddams S A, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Kim K, Levi F, Lorini L, Oskay W H, Parker T E, Shirley J, Stalnaker J E 2007 Phys. Rev. Lett. 98 070801

    [14]

    Sullivan D B, Ashby N, Donley E A, Heavner T P, Hollberg L W, Jefferts S R, Klipstein W M, Phillips W D, Seidel D J 2005 Adv. Space Res. 36 107

    [15]

    Schiller S, Görlitz A, Nevsky A, Alighanbari S, Vasilyev S, Abou-Jaoudeh C, Mura G, Franzen T, Sterr U, Falke S, Lisdat C, Rasel E, Kulosa A, Bize S, Lodewyck J, Tino G M, Poli N, Schioppo M, Bongs K, Singh Y, Gill P, Barwood G, Ovchinnikov Y, Stuhler J, Kaenders W, Braxmaier C, Holzwarth R, Donati A, Lecomte S, Calonico D, Levi F 2012 Let's Embrace Space (Vol. Ⅱ) (Luxembourg: Publications Office of the European Union) p452

    [16]

    Świerad D, Häfner S, Vogt S, Venon B, Holleville D, Bize S, Kulosa A, Bode S, Singh Y, Bongs K, Rasel E M, Lodewyck J, Le Targat R, Lisdat C, Sterr U 2016 Nat. Sci. Rep. 6 33973

    [17]

    Li L, Qu Q Z, Wang B, Li T, Zhao J B, Ji J W, Ren W, Zhao X, Ye M F, Yao Y Y, L D S, Liu L 2016 Chin. Phys. Lett. 33 063201

    [18]

    Origlia S, Schiller S, Pramod M S, Smith L, Singh Y, He W, Viswam S, Świerad D, Hughes J, Bongs K, Sterr U, Lisdat C, Vogt S, Bize S, Lodewyck J, Le Targa R, Holleville D, Venon B, Gill P, Barwood G, Hill I R, Ovchinnikov Y, Kulosa A, Ertmer W, Rasel E M, Stuhler J, Kaenders W, the SOC2 consortium contributors 2016 Quantum Opt. 9900 990003

    [19]

    Poli N, Schioppo M, Vogt S, Falke St, Sterr U, Lisdat Ch, Tino G M 2014 Appl. Phys. B 117 1107

    [20]

    Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2017 Phys. Rev. Lett. 118 073601

    [21]

    Cao J, Zhang P, Shang J J, Cui K F, Yuan J B, Chao S J, Wang S M, Shu H L, Huang X R 2017 Appl. Phys. B 123 112

    [22]

    Vogt S, Lisdat C, Legero T, Sterr U, Ernsting I, Nevsky A, Schiller S 2011 Appl. Phys. B 104 741

    [23]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

    [24]

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2005 Acta Phys. Sin. 54 5104 (in Chinese) [耿涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民 2005 物理学报 54 5104]

    [25]

    Fu J X, Li Y M, Chen X Z, Yang D H, Wang Y Q 2001 Acta Opt. Sin. 21 414 (in Chinese) [付军贤, 李义民, 陈徐宗, 杨东海, 王义遒 2001 光学学报 21 414]

    [26]

    Brzozowski T M, Maczynska M, Zawada M, Zachorowski J, Gawlik W 2002 J. Opt. B 4 62

    [27]

    Tian X 2010 M.S. Thesis (Xi'an: National Time Service Center, University of Chinese Academy of Sciences) (in Chinese) [田晓 2010硕士学位论文 (西安: 中国科学院大学国家授时中心)]

    [28]

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Peking University Press) p294 (in Chinese) [王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) 第294页]

    [29]

    Lett P D, Watts R N, Westbrook C I, Phillips W D 1988 Phys. Rev. Lett. 61 169

    [30]

    Savard T A 1998 Ph.D. Dissertation (Durham: Duke University)

    [31]

    Ovchinnikov Y B 2008 Eur. Phys. J. Special Topics 163 95

  • [1]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [2]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2109

    [3]

    Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B, Katori H 2016 Nat. Photon. 10 662

    [4]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Häfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [5]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [6]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [7]

    Hachisu H, Ido T 2015 Jpn. J. Appl. Phys. 54 112401

    [8]

    Akamatsu D, Inaba H, Hosaka K, Yasuda M, Onae A, Suzuyama T, Amemiya M, Hong F L 2014 Appl. Phys. Express 7 012401

    [9]

    Schiller S, Görlitz A, Nevsky A, Koelemeij J C J, Wicht A, Gill P, Klein H A, Margolis H S, Mileti G, Sterr U, Riehle F, Peik E, Tamm C, Ertmer W, Rasel E, Klein V, Salomon C, Tino G M, Lemonde P, Holzwarth R, Hänsch T W 2007 Nucl. Phys. B 166 300

    [10]

    Salomon Ch, Dimarcq N, Abgrall M, Clairon A, Laurent P, Lemonde P, Santarelli G, Uhrich P, Bernier L G, Busca G, Jornod A, Thomann P, Samain E, Wolf P, Gonzalez F, Guillemot Ph, Leon S, Nouel F, Sirmain Ch, Feltham S 2001 C. R. Phys. 2 1313

    [11]

    Cacciapuoti L, Salomon C 2009 Eur. Phys. J. Special Topics 172 57

    [12]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801

    [13]

    Fortier T M, Ashby N, Bergquist J C, Delaney M J, Diddams S A, Heavner T P, Hollberg L, Itano W M, Jefferts S R, Kim K, Levi F, Lorini L, Oskay W H, Parker T E, Shirley J, Stalnaker J E 2007 Phys. Rev. Lett. 98 070801

    [14]

    Sullivan D B, Ashby N, Donley E A, Heavner T P, Hollberg L W, Jefferts S R, Klipstein W M, Phillips W D, Seidel D J 2005 Adv. Space Res. 36 107

    [15]

    Schiller S, Görlitz A, Nevsky A, Alighanbari S, Vasilyev S, Abou-Jaoudeh C, Mura G, Franzen T, Sterr U, Falke S, Lisdat C, Rasel E, Kulosa A, Bize S, Lodewyck J, Tino G M, Poli N, Schioppo M, Bongs K, Singh Y, Gill P, Barwood G, Ovchinnikov Y, Stuhler J, Kaenders W, Braxmaier C, Holzwarth R, Donati A, Lecomte S, Calonico D, Levi F 2012 Let's Embrace Space (Vol. Ⅱ) (Luxembourg: Publications Office of the European Union) p452

    [16]

    Świerad D, Häfner S, Vogt S, Venon B, Holleville D, Bize S, Kulosa A, Bode S, Singh Y, Bongs K, Rasel E M, Lodewyck J, Le Targat R, Lisdat C, Sterr U 2016 Nat. Sci. Rep. 6 33973

    [17]

    Li L, Qu Q Z, Wang B, Li T, Zhao J B, Ji J W, Ren W, Zhao X, Ye M F, Yao Y Y, L D S, Liu L 2016 Chin. Phys. Lett. 33 063201

    [18]

    Origlia S, Schiller S, Pramod M S, Smith L, Singh Y, He W, Viswam S, Świerad D, Hughes J, Bongs K, Sterr U, Lisdat C, Vogt S, Bize S, Lodewyck J, Le Targa R, Holleville D, Venon B, Gill P, Barwood G, Hill I R, Ovchinnikov Y, Kulosa A, Ertmer W, Rasel E M, Stuhler J, Kaenders W, the SOC2 consortium contributors 2016 Quantum Opt. 9900 990003

    [19]

    Poli N, Schioppo M, Vogt S, Falke St, Sterr U, Lisdat Ch, Tino G M 2014 Appl. Phys. B 117 1107

    [20]

    Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2017 Phys. Rev. Lett. 118 073601

    [21]

    Cao J, Zhang P, Shang J J, Cui K F, Yuan J B, Chao S J, Wang S M, Shu H L, Huang X R 2017 Appl. Phys. B 123 112

    [22]

    Vogt S, Lisdat C, Legero T, Sterr U, Ernsting I, Nevsky A, Schiller S 2011 Appl. Phys. B 104 741

    [23]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

    [24]

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2005 Acta Phys. Sin. 54 5104 (in Chinese) [耿涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民 2005 物理学报 54 5104]

    [25]

    Fu J X, Li Y M, Chen X Z, Yang D H, Wang Y Q 2001 Acta Opt. Sin. 21 414 (in Chinese) [付军贤, 李义民, 陈徐宗, 杨东海, 王义遒 2001 光学学报 21 414]

    [26]

    Brzozowski T M, Maczynska M, Zawada M, Zachorowski J, Gawlik W 2002 J. Opt. B 4 62

    [27]

    Tian X 2010 M.S. Thesis (Xi'an: National Time Service Center, University of Chinese Academy of Sciences) (in Chinese) [田晓 2010硕士学位论文 (西安: 中国科学院大学国家授时中心)]

    [28]

    Wang Y Q 2007 Laser Cooling and Trapping of Atoms (Beijing: Peking University Press) p294 (in Chinese) [王义遒 2007 原子的激光冷却与陷俘 (北京: 北京大学出版社) 第294页]

    [29]

    Lett P D, Watts R N, Westbrook C I, Phillips W D 1988 Phys. Rev. Lett. 61 169

    [30]

    Savard T A 1998 Ph.D. Dissertation (Durham: Duke University)

    [31]

    Ovchinnikov Y B 2008 Eur. Phys. J. Special Topics 163 95

  • [1] Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Jiang Meng, Zhang Yu, Guo Dong, Zhang Ji-Hai. Frequency control algorithm of domestic optically pumped small cesium clock based on optimal control theory. Acta Physica Sinica, 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] Wei Yuan-Fei, Tang Zhi-Ming, Li Cheng-Bin, Huang Xue-Ren. Theoretical calculation of “tune-out” wavelengths for clock states of Al+. Acta Physica Sinica, 2024, 73(10): 103103. doi: 10.7498/aps.73.20240177
    [3] Zhang Jia-Xi, Li Ling-Feng, Zhong Hong-Wen, Xiao Jia-Ying. Miniaturized photoacoustic/ultrasound endoscopic imaging probe for molecular imaging of deep tissues. Acta Physica Sinica, 2024, 73(21): 214203. doi: 10.7498/aps.73.20241076
    [4] Liao Qiu-Yu, Hu Heng-Jie, Chen Mao-Wei, Shi Yi, Zhao Yuan, Hua Chun-Bo, Xu Si-Liu, Fu Qi-Dong, Ye Fang-Wei, Zhou Qin. Two-dimensional spatial optical solitons in Rydberg cold atomic system under the action of optical lattice. Acta Physica Sinica, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [5] Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu. Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications. Acta Physica Sinica, 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [6] Liu Yun, Wang Wen-Hai, He De-Jing, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Laser system of cold atom optical clock in China Space Station. Acta Physica Sinica, 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [7] Chen Ze-Rui, Liu Guang-Cun, Yu Zhen-Hua. Collision clock shift of two Fermi atoms in harmonic potentials. Acta Physica Sinica, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [8] Kong De-Huan, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing, Chang Hong. Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock. Acta Physica Sinica, 2021, 70(3): 030601. doi: 10.7498/aps.70.20201204
    [9] Guan Yong, Liu Dan-Dan, Wang Xin-Liang, Zhang Hui, Shi Jun-Ru, Bai Yang, Ruan Jun, Zhang Shou-Gang. Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock. Acta Physica Sinica, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [10] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [11] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [12] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [13] Xu Qin-Fang, Yin Mo-Juan, Kong De-Huan, Wang Ye-Bing, Lu Ben-Quan, Guo Yang, Chang Hong. Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock. Acta Physica Sinica, 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [14] Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing, Chang Hong. Interrogation of spin polarized clock transition in strontium optical lattice clock. Acta Physica Sinica, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [15] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [16] Zhang Xi, Liu Hui, Jiang Kun-Liang, Wang Jin-Qi, Xiong Zhuan-Xian, He Ling-Xiang, Lü Bao-Long. Transfer cavity scheme for stabilization of lattice laser in ytterbium lattice clock. Acta Physica Sinica, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [17] Wu Chang-Jiang, Ruan Jun, Chen Jiang, Zhang Hui, Zhang Shou-Gang. A two-dimensional magneto-optical trap for a cesium fountain clock. Acta Physica Sinica, 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [18] Gao Feng, Wang Ye-Bing, Tian Xiao, Xu Peng, Chang Hong. Observation of transitions in strontium triplet state and its application in optical clock. Acta Physica Sinica, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [19] Xu Zhi-Jun, Liu Xia-Yin. Density correlation effect of incoherent ultracold atoms in an optical lattice. Acta Physica Sinica, 2011, 60(12): 120305. doi: 10.7498/aps.60.120305
    [20] Ji Xian-Ming, Lu Jun-Fa, Mu Ren-Wang, Yin Jian-Ping. Array of micro-optical traps for cold atoms or cold molecules using a Damman grating. Acta Physica Sinica, 2006, 55(7): 3396-3402. doi: 10.7498/aps.55.3396
Metrics
  • Abstract views:  7803
  • PDF Downloads:  303
  • Cited By: 0
Publishing process
  • Received Date:  04 December 2017
  • Accepted Date:  21 December 2017
  • Published Online:  05 March 2018

/

返回文章
返回