Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock

Guan Yong Liu Dan-Dan Wang Xin-Liang Zhang Hui Shi Jun-Ru Bai Yang Ruan Jun Zhang Shou-Gang

Citation:

Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock

Guan Yong, Liu Dan-Dan, Wang Xin-Liang, Zhang Hui, Shi Jun-Ru, Bai Yang, Ruan Jun, Zhang Shou-Gang
PDF
HTML
Get Citation
  • Cold collision frequency shift is one of the major systematic effects which limit the frequency uncertainty of the cesium fountain atomic clock. It is proportional to the effective atomic density, which is defined as the average density over the initial spacial and velocity distribution. The measurement of the frequency shift is based on a differential method, in which the fountain clock is operated with two different atomic densities, i.e. high density and low density, in turn. The clock frequency without collision shift can be achieved by linear extrapolation with the frequencies and density ratios of two states. For the density ratio is estimated with the atom number, it plays a crucial role in generating atoms with same density distribution for reducing systematic uncertainty in cold collision frequency shift estimation. The rapid adiabatic passage method is used in Cesium fountain clock to realize homogeneous transition probability, which modulates the amplitude and frequency of microwave continuously to prepare atom sample. To investigate the precision of this method, theoretical analysis and experimental measurement are both used here. An equation of deviation is derived from the time evolution of Bloch vector. The vector rotates at angular speed Ω with the rotation axis processing at lower angular speed. The deviations in the two directions on the surface of Bloch sphere are determined by the equations which are similar to wave equations, and can be simplified into wave equations when the deviations are sufficiently small. It is shown in the equations that the deviations are stimulated by angular velocity and angular acceleration of the precession, and is inversely proportional to the square of Ω. Further calculation shows that the deviation becomes smaller when the amplitude of microwave frequency and Rabi frequency are close to each other. It is then confirmed experimentally. The effects of some other parameters, such as the pulse length and time delay, on transition probability are also measured, showing that the RAP method is insensitive to these parameters up to a large scope. The precision of RAP method is dominated by three factors. The first factor is the product of rotating angular speed Ω and pulse length T, i.e. ΩT: The increase of ΩT can reduce the uncertainty to a satisfactory degree. The second factor is the uncertainty of resonant frequency, so the measurement is required to be precise. The third factor is the unexpected atoms which are not selected by the microwave, and may be attributed to pulling light. After optimizing the parameters, the ratio of low density to high density can approach to 0.5 with 3 × 10–3 uncertainty, which leads to a systematic relative uncertainty of cold collision shift up to 1.6 × 10–16.
      Corresponding author: Ruan Jun, ruanjun@ntsc.ac.cn
    [1]

    Li R, Gibble K, Szymaniec K 2011 Metrologia 48 283Google Scholar

    [2]

    Guena J, Abgrall M, Rovera M, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A, Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391Google Scholar

    [3]

    Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, De Marchi A, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321Google Scholar

    [4]

    Weyers S, Gerginov V, Nemitz N, Li R, Gibble K 2012 Metrologia 49 82Google Scholar

    [5]

    阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚 2015 物理学报 64 160308Google Scholar

    Ruan J, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F, Zhang S G 2015 Acta Phys. Sin. 64 160308Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Verhaar B J, Koelman J M V A, Stoof H T C, Luiten O J, Crampton S B 1987 Phys. Rev. A 35 3825Google Scholar

    [8]

    Tiesinga E, Verhaar B J, Stoof H T C, van Bragt D 1992 Phys. Rev. A 45 R2671Google Scholar

    [9]

    Kokkelmans S, Verhaar B, Gibble K, Heinzen D 1997 Phys. Rev. A 56 R4389Google Scholar

    [10]

    Leo P J, Julienne P S, Mies F H, Williams C J 2001 Phys. Rev. Lett. 86 3743Google Scholar

    [11]

    Sortais Y, Bize S, Nicolas C, Clairon A, Salomon C, Williams C 2000 Phys. Rev. Lett. 85 3117Google Scholar

    [12]

    Santos F P D, Marion H, Bize S, Sortais Y, Clairon A, Salomon C 2002 Phys. Rev. Lett. 89 233004Google Scholar

    [13]

    Fertig C, Gibble K 2000 Phys. Rev. Lett. 85 1622Google Scholar

    [14]

    Heavner T P, Jefferts S R, Shirley J H, Parker T E, Donley E A, Ashby N, Barlow S E, Levi F, Costanzo G 2014 Metrologia 51 174Google Scholar

    [15]

    Messiah A 1999 Quantum Mechanics (Vol. 2) (New York: Dover) pp740–742

    [16]

    Loy M M T 1974 Phys. Rev. Lett. 32 814Google Scholar

    [17]

    Marion H 2005 Ph. D. Dissertation (Paris: Université de Paris VI)

    [18]

    Zhang S G 2004 Ph.D. Dissertation (Paris: Université de Paris VI)

    [19]

    Kazda M, Gerginov V, Nemitz N, Weyers S 2013 IEEE Trans. Instrum. Meas. 62 2812Google Scholar

    [20]

    Kasevich M A, Chu S 1992 Phys. Rev. Lett. 69 1741Google Scholar

    [21]

    刘丹丹, 阮军, 管勇, 张辉, 杨帆, 王心亮, 施俊如, 张首刚 2017 时间频率学报 42 107

    Liu D D, Ruan J, Guan Y, Zhang H, Yang F, Wang X L, Shi J R, Zhang S G 2017 Journal of Time and Frequency 42 107

  • 图 1  坐标变换示意图

    Figure 1.  Map of coordinate transformation

    图 2  生成RAP脉冲的微波电路

    Figure 2.  Scheme of microwave circuit generating RAP pulses.

    图 3  脉冲长度8 ms, 脉冲起始点在进入腔后4 ms的跃迁几率 (a) δ0为5 kHz, 不同b0的跃迁几率; (b)功率幅度为10 kHz, 不同δ0的跃迁几率

    Figure 3.  Transition probability as a function of b0 and δ0 with 8 ms pulse starts 4 ms after atoms entering the cavity: (a) δ0 = 5 kHz, with different b0; (b) b0 = 10 kHz, with different δ0.

    图 4  误差源随时间的变化

    Figure 4.  Time evolution of deviation excitation.

    图 5  时间参数对跃迁比例的影响, 其中δ0 = 5 kHz, b0 = 10 kHz. 以原子到达选态腔下端面为时间0点 (a)固定脉冲以原子在腔中心的时间点为中心, 改变脉冲长度; (b)固定脉冲长度为8 ms, 改变脉冲起始时间

    Figure 5.  Transition probability as a function of time parameters, δ0 = 5 kHz, b0 = 10 kHz, atoms enter selection cavity at time 0: (a) Pulse duration remaining symmetric about the central point of cavity; (b) start point of pulse with a fixed duration of 8 ms.

    图 6  不同频率中心值的跃迁几率

    Figure 6.  Transition probabilty as a function of center frequency detuning.

    图 7  δ0 = 5 kHz, 脉冲开始于不同时刻, 结束于入腔后10 ms. 5个不同脉冲长度下, 不同b0的跃迁几率 (a)横坐标为b0; (b)横坐标为b0与脉冲长度T的乘积

    Figure 7.  Transition probability as a function of b0 for a 5 kHz δ0 pulse start at 5 different points and end at 10 ms after entering cavity: (a) b0 as the abscissa; (b) b0T as the abscissa.

    图 8  (a)在5个δ0下, 不同b0的跃迁几率; (b)脉冲频率幅度为5 kHz, b0为10 kHz, 不同脉冲长度的跃迁几率

    Figure 8.  Transition probability as a function of (a) b0 for five different δ0, (b) pulse duration with δ0 = 5 kHz, and b0 = 10 kHz.

    图 9  (a)中心频率取100, 0, –100 Hz, 不同b0时的跃迁几率; (b)δ0 = 5 kHz, b0 = 10 kHz时, 不同中心频率的跃迁几率

    Figure 9.  (a) Transition probability as a function of b0 for 100, 0, –100 Hz center frequency detuning; (b) transition probability as a function of center frequency detuning for δ0 = 5 kHz and b0 = 10 kHz.

    图 10  密度比的稳定度

    Figure 10.  Stability of atoms number ratio.

    图 11  不同磁场下的跃迁几率

    Figure 11.  Transition probability as a function of magnetic field

  • [1]

    Li R, Gibble K, Szymaniec K 2011 Metrologia 48 283Google Scholar

    [2]

    Guena J, Abgrall M, Rovera M, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Li R, Gibble K, Clairon A, Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391Google Scholar

    [3]

    Jefferts S R, Shirley J, Parker T E, Heavner T P, Meekhof D M, Nelson C, Levi F, Costanzo G, De Marchi A, Drullinger R, Hollberg L, Lee W D, Walls F L 2002 Metrologia 39 321Google Scholar

    [4]

    Weyers S, Gerginov V, Nemitz N, Li R, Gibble K 2012 Metrologia 49 82Google Scholar

    [5]

    阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚 2015 物理学报 64 160308Google Scholar

    Ruan J, Wang Y B, Chang H, Jiang H F, Liu T, Dong R F, Zhang S G 2015 Acta Phys. Sin. 64 160308Google Scholar

    [6]

    王倩, 魏荣, 王育竹 2018 物理学报 67 163202Google Scholar

    Wang Q, Wei R, Wang Y Z 2018 Acta Phys. Sin. 67 163202Google Scholar

    [7]

    Verhaar B J, Koelman J M V A, Stoof H T C, Luiten O J, Crampton S B 1987 Phys. Rev. A 35 3825Google Scholar

    [8]

    Tiesinga E, Verhaar B J, Stoof H T C, van Bragt D 1992 Phys. Rev. A 45 R2671Google Scholar

    [9]

    Kokkelmans S, Verhaar B, Gibble K, Heinzen D 1997 Phys. Rev. A 56 R4389Google Scholar

    [10]

    Leo P J, Julienne P S, Mies F H, Williams C J 2001 Phys. Rev. Lett. 86 3743Google Scholar

    [11]

    Sortais Y, Bize S, Nicolas C, Clairon A, Salomon C, Williams C 2000 Phys. Rev. Lett. 85 3117Google Scholar

    [12]

    Santos F P D, Marion H, Bize S, Sortais Y, Clairon A, Salomon C 2002 Phys. Rev. Lett. 89 233004Google Scholar

    [13]

    Fertig C, Gibble K 2000 Phys. Rev. Lett. 85 1622Google Scholar

    [14]

    Heavner T P, Jefferts S R, Shirley J H, Parker T E, Donley E A, Ashby N, Barlow S E, Levi F, Costanzo G 2014 Metrologia 51 174Google Scholar

    [15]

    Messiah A 1999 Quantum Mechanics (Vol. 2) (New York: Dover) pp740–742

    [16]

    Loy M M T 1974 Phys. Rev. Lett. 32 814Google Scholar

    [17]

    Marion H 2005 Ph. D. Dissertation (Paris: Université de Paris VI)

    [18]

    Zhang S G 2004 Ph.D. Dissertation (Paris: Université de Paris VI)

    [19]

    Kazda M, Gerginov V, Nemitz N, Weyers S 2013 IEEE Trans. Instrum. Meas. 62 2812Google Scholar

    [20]

    Kasevich M A, Chu S 1992 Phys. Rev. Lett. 69 1741Google Scholar

    [21]

    刘丹丹, 阮军, 管勇, 张辉, 杨帆, 王心亮, 施俊如, 张首刚 2017 时间频率学报 42 107

    Liu D D, Ruan J, Guan Y, Zhang H, Yang F, Wang X L, Shi J R, Zhang S G 2017 Journal of Time and Frequency 42 107

  • [1] Wei Bo-Ning, Jiao Zhi-Hong, Zhou Xiao-Xin. Frequency shiftand control ofhigh-order harmonicsof H atom driven by anasymmetric laser pulse. Acta Physica Sinica, 2022, 71(7): 073201. doi: 10.7498/aps.71.20212146
    [2] Bai Jing, Xie Ting. Ultracold atom-atom collisions by renormalized Numerov method. Acta Physica Sinica, 2022, 71(3): 033401. doi: 10.7498/aps.71.20211308
    [3] Surveying ultracold atom-atom binary collisions by utilizing renormalized Numerov method. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211308
    [4] Chen Ze-Rui, Liu Guang-Cun, Yu Zhen-Hua. Collision clock shift of two Fermi atoms in harmonic potentials. Acta Physica Sinica, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [5] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [6] Shi Jun-Ru, Wang Xin-Liang, Guan Yong, Ruan Jun, Liu Dan-Dan, Bai Yang, Yang Fan, Zhang Hui, Yu Feng-Xiang, Fan Si-Chen, Zhang Shou-Gang. A method of accurately determining temperature of cold atomic cloud in atomic fountain. Acta Physica Sinica, 2019, 68(19): 190601. doi: 10.7498/aps.68.20190115
    [7] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [8] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [9] Qin Yan, Li Sheng-Chang. Adiabatic conversion of ultracold atoms into molecules via square-shaped pulse field. Acta Physica Sinica, 2018, 67(20): 203701. doi: 10.7498/aps.67.20180908
    [10] Wang Qian, Wei Rong, Wang Yu-Zhu. Atomic fountain frequency standard: principle and development. Acta Physica Sinica, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [11] Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying,  Zhao Jian-Ming, Jia Suo-Tang. Autler-Townes splitting of ultracold cesium Rydberg atoms. Acta Physica Sinica, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [12] Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system. Acta Physica Sinica, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [13] Xu Run-Dong, Liu Wen-Liang, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Ultracold collisions in a dual species 23Na-133Cs magneto-optical trap. Acta Physica Sinica, 2016, 65(9): 093201. doi: 10.7498/aps.65.093201
    [14] Ruan Jun, Wang Ye-Bing, Chang Hong, Jiang Hai-Feng, Liu Tao, Dong Rui-Fang, Zhang Shou-Gang. Progress towards primary frequency standard. Acta Physica Sinica, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [15] Wu Chang-Jiang, Ruan Jun, Chen Jiang, Zhang Hui, Zhang Shou-Gang. A two-dimensional magneto-optical trap for a cesium fountain clock. Acta Physica Sinica, 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [16] Sun Jiang, Sun Juan, Wang Ying, Su Hong-Xin. Measurement of the argon-gas-induced broadening and shifting of the barium Rydberg levels by two-photon resonant nondegenerate four-wave mixing. Acta Physica Sinica, 2012, 61(11): 114214. doi: 10.7498/aps.61.114214
    [17] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] QU YI-ZHI, WANG JIAN-GUO, LI JIA-MING. INELASTIC COLLISION PROCESS OF Rb ATOM BETWEEN INITIAL AND FINAL CHANNELS. Acta Physica Sinica, 1997, 46(2): 249-254. doi: 10.7498/aps.46.249
    [19] CHU XIN-ZHAO, LIU SHU-QIN, DONG TAI-QIAN. MICROWAVE POWER FREQUENCY SHIFT IN THE 87Rb ATOMIC FREQUENCY STANDARD. Acta Physica Sinica, 1994, 43(7): 1072-1076. doi: 10.7498/aps.43.1072
    [20] SHEN YI-FAN, LI WAN-XING. ENERGY TRANSFER IN COLLISIONS BETWEEN TWO EXCITED CESIUM ATOMS. Acta Physica Sinica, 1993, 42(11): 1766-1773. doi: 10.7498/aps.42.1766
Metrics
  • Abstract views:  7119
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2019
  • Accepted Date:  04 April 2020
  • Available Online:  08 May 2020
  • Published Online:  20 July 2020

/

返回文章
返回