搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷原子向异核四聚物分子A3B的绝热转化

李冠强 彭娉 曹振洲 薛具奎

引用本文:
Citation:

超冷原子向异核四聚物分子A3B的绝热转化

李冠强, 彭娉, 曹振洲, 薛具奎

Adiabatic conversion from ultracold atoms to heteronuclear tetrameric molecule A3B

Li Guan-Qiang, Peng Ping, Cao Zhen-Zhou, Xue Ju-Kui
PDF
导出引用
  • 提出了利用Efimov共振辅助的受激拉曼绝热通道(ER-STIRAP) 过程实施超冷原子向异核四聚物分子A3B转化的理论方案, 得到了转化过程中中间态分别为同核Efimov三聚物A3和异核Efimov三聚物A2B两种途径下系统的暗态解, 证实了ER-STIRAP技术对超冷异核四聚物分子A3B合成的可行性和有效性. 研究了外场参数, 包括缔合光脉冲的强度、脉宽、磁耦合强度及其失谐量等对A3B形成的影响. 对两种不同中间态的转化途径进行比较发现, 与中间态为异核Efimov三聚物A2B的途径相比, 经历中间态为同核Efimov三聚物A3的途径时系统实现最终四聚物分子A3B的产率更高. 另外, 还讨论了系统内禀的非线性和中间态的自发辐射损失对异核四聚物分子合成的影响.
    We present a theoretical scheme for conversion from ultracold atoms to heteronuclear tetrameric molecule A3B via Efimov resonace-assisted stimulated Raman adiabatic passage (ER-STIRAP). The dark state solutions of the system are obtianed for two different pathways. For the first pathway, the intermediate state is populated by homonuclear Efimov trimer A3, and the second one by heteronuclear Efimov trimer A2B. The feasibility and the effectiveness of the scheme are also verified. Meanwhile, we investigate the effects of external field parameters, including the intensity of associated laser pulses, its width, magnetic coupling strength and its detuning, on the fomation of heteronuclear tetrameric molecules. By comparison, it is found that the ultimate yield of the tetrameric molecules for the second pathway is less than ones for the first pathway. In addition, the effects of the intrinsic nolinearity of the system and the spontaneous decay in the intermediate state on the tetramer formation are discussed.
    • 基金项目: 国家自然科学基金 (批准号: 10774120, 10975114), 中南民族大学中央高校基本科研业务专项基金(批准号: CZQ11001)和 陕西科技大学自然科学基金(批准号: ZX11-33)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774120, 10975114), the Fundamental Research Funds for the Central Universities of South-Central University for Nationalities (Grant No. CZQ11001), and the Natural Science Foundation of Shaanxi University of Science and technology, China (Grant No. ZX11-33).
    [1]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [2]

    Chin Cheng, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048

    [3]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [4]

    Jones K M, Tiesinga E, Lett P D, Julienne P 2006 Rev. Mod. Phys. 78 483

    [5]

    Köhler T, Góral K, Julienne P 2006 Rev. Mod. Phys. 78 1311

    [6]

    Chin Cheng, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [7]

    Mackie M, Kowalski R, Javanainen J 2000 Phys. Rev. Lett. 84 3803

    [8]

    Drummond P D, Kheruntsyan K V, Heinzen D J, Wynar R H 2002 Phys. Rev. A 65 063619

    [9]

    Mackie M, Härkönen K, Collin A, Suominen K A, Javanainen J 2004 Phys. Rev. A 70 013614

    [10]

    Meng S Y, Liu J 2010 Prog. Phys. 30 280 (in Chinese) [孟少英, 刘杰 2010 物理学进展 30 280]

    [11]

    Mackie M 2002 Phys. Rev. A 66 043613

    [12]

    Mackie M, DeBrosse C 2010 Phys. Rev. A 81 043625

    [13]

    Winkler K, Thalhammer G, Theis M, Ritsch H, Grimm R, Denschlag J H 2005 Phys. Rev. Lett. 95 063202

    [14]

    Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403

    [15]

    H. Jing, J. Cheng, P. Meystre 2008 Phys. Rev. A 77 043614

    [16]

    Jing H, Jiang Y 2008 Phys. Rev. A 77 065601

    [17]

    Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C, Grimm R 2006 Nature 440 315

    [18]

    Knoop S, Ferlaino F, Mark M, Berninger M, Schoebel H, Nägerl H C, Grimm R 2009 Nature Phys. 5 227

    [19]

    Ottenstein T B, Lompe T, Kohnen M, Wenz A N, Jochim S 2008 Phys. Rev. Lett. 101 203202

    [20]

    Huckans J H, Williams J R, Hazlett E L, Stites R W, O'Hara K M 2009 Phys. Rev. Lett. 102 165302

    [21]

    Zaccanti M, Deissler B, D'Errico C, Fattori M, Jona-Lasinio M, Muller S, Roati G., Inguscio M, Modugno G. 2009 Nature Phys. 5 586

    [22]

    Barontini G, Weber C, Rabatti F, Catani J, Thalhammer G, Inguscio M, Minardi F 2009 Phys. Rev. Lett. 103 043201

    [23]

    Efimov V 1970 Phys. Lett. B 33 563

    [24]

    Braaten E, Hammer H W 2006 Phys. Rep. 428 259

    [25]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [26]

    Meng S Y, Fu L B, Chen J, Liu J 2009 Phys. Rev. A 79 063415

    [27]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [28]

    Lu L H, Li Y Q 2008 Phys. Rev. A 77 053611

    [29]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英, 吴炜 2009 物理学报 58 5311]

    [30]

    Meng S Y, Wu W, Liu B 2009 Acta Phys. Sin. 58 6902 (in Chinese) [孟少英, 吴炜, 刘彬 2009 物理学报 58 6902]

    [31]

    Meng S Y, Wu W, Liu B, Ye D F, Fu L B 2009 Chin. Phys. B 18 3844

  • [1]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [2]

    Chin Cheng, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048

    [3]

    Cronin A D, Schmiedmayer J, Pritchard D E 2009 Rev. Mod. Phys. 81 1051

    [4]

    Jones K M, Tiesinga E, Lett P D, Julienne P 2006 Rev. Mod. Phys. 78 483

    [5]

    Köhler T, Góral K, Julienne P 2006 Rev. Mod. Phys. 78 1311

    [6]

    Chin Cheng, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [7]

    Mackie M, Kowalski R, Javanainen J 2000 Phys. Rev. Lett. 84 3803

    [8]

    Drummond P D, Kheruntsyan K V, Heinzen D J, Wynar R H 2002 Phys. Rev. A 65 063619

    [9]

    Mackie M, Härkönen K, Collin A, Suominen K A, Javanainen J 2004 Phys. Rev. A 70 013614

    [10]

    Meng S Y, Liu J 2010 Prog. Phys. 30 280 (in Chinese) [孟少英, 刘杰 2010 物理学进展 30 280]

    [11]

    Mackie M 2002 Phys. Rev. A 66 043613

    [12]

    Mackie M, DeBrosse C 2010 Phys. Rev. A 81 043625

    [13]

    Winkler K, Thalhammer G, Theis M, Ritsch H, Grimm R, Denschlag J H 2005 Phys. Rev. Lett. 95 063202

    [14]

    Ling H Y, Pu H, Seaman B 2004 Phys. Rev. Lett. 93 250403

    [15]

    H. Jing, J. Cheng, P. Meystre 2008 Phys. Rev. A 77 043614

    [16]

    Jing H, Jiang Y 2008 Phys. Rev. A 77 065601

    [17]

    Kraemer T, Mark M, Waldburger P, Danzl J G, Chin C, Engeser B, Lange A D, Pilch K, Jaakkola A, Nägerl H C, Grimm R 2006 Nature 440 315

    [18]

    Knoop S, Ferlaino F, Mark M, Berninger M, Schoebel H, Nägerl H C, Grimm R 2009 Nature Phys. 5 227

    [19]

    Ottenstein T B, Lompe T, Kohnen M, Wenz A N, Jochim S 2008 Phys. Rev. Lett. 101 203202

    [20]

    Huckans J H, Williams J R, Hazlett E L, Stites R W, O'Hara K M 2009 Phys. Rev. Lett. 102 165302

    [21]

    Zaccanti M, Deissler B, D'Errico C, Fattori M, Jona-Lasinio M, Muller S, Roati G., Inguscio M, Modugno G. 2009 Nature Phys. 5 586

    [22]

    Barontini G, Weber C, Rabatti F, Catani J, Thalhammer G, Inguscio M, Minardi F 2009 Phys. Rev. Lett. 103 043201

    [23]

    Efimov V 1970 Phys. Lett. B 33 563

    [24]

    Braaten E, Hammer H W 2006 Phys. Rep. 428 259

    [25]

    Bergmann K, Theuer H, Shore B W 1998 Rev. Mod. Phys. 70 1003

    [26]

    Meng S Y, Fu L B, Chen J, Liu J 2009 Phys. Rev. A 79 063415

    [27]

    Meng S Y, Fu L B, Liu J 2008 Phys. Rev. A 78 053410

    [28]

    Lu L H, Li Y Q 2008 Phys. Rev. A 77 053611

    [29]

    Meng S Y, Wu W 2009 Acta Phys. Sin. 58 5311 (in Chinese) [孟少英, 吴炜 2009 物理学报 58 5311]

    [30]

    Meng S Y, Wu W, Liu B 2009 Acta Phys. Sin. 58 6902 (in Chinese) [孟少英, 吴炜, 刘彬 2009 物理学报 58 6902]

    [31]

    Meng S Y, Wu W, Liu B, Ye D F, Fu L B 2009 Chin. Phys. B 18 3844

计量
  • 文章访问数:  3662
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-25
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

超冷原子向异核四聚物分子A3B的绝热转化

  • 1. 陕西科技大学理学院, 西安 710021;
  • 2. 中南民族大学电子信息工程学院, 武汉 430074;
  • 3. 西北师范大学物理与电子工程学院, 兰州 730070
    基金项目: 

    国家自然科学基金 (批准号: 10774120, 10975114), 中南民族大学中央高校基本科研业务专项基金(批准号: CZQ11001)和 陕西科技大学自然科学基金(批准号: ZX11-33)资助的课题.

摘要: 提出了利用Efimov共振辅助的受激拉曼绝热通道(ER-STIRAP) 过程实施超冷原子向异核四聚物分子A3B转化的理论方案, 得到了转化过程中中间态分别为同核Efimov三聚物A3和异核Efimov三聚物A2B两种途径下系统的暗态解, 证实了ER-STIRAP技术对超冷异核四聚物分子A3B合成的可行性和有效性. 研究了外场参数, 包括缔合光脉冲的强度、脉宽、磁耦合强度及其失谐量等对A3B形成的影响. 对两种不同中间态的转化途径进行比较发现, 与中间态为异核Efimov三聚物A2B的途径相比, 经历中间态为同核Efimov三聚物A3的途径时系统实现最终四聚物分子A3B的产率更高. 另外, 还讨论了系统内禀的非线性和中间态的自发辐射损失对异核四聚物分子合成的影响.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回