Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Laser system of cold atom optical clock in China Space Station

Liu Yun Wang Wen-Hai He De-Jing Zhou Yong-Zhuang Shen Yong Zou Hong-Xin

Citation:

Laser system of cold atom optical clock in China Space Station

Liu Yun, Wang Wen-Hai, He De-Jing, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin
PDF
HTML
Get Citation
  • The world's first space optical clock (SOC) developed in China, which is composed of five subsystems, i.e. an optical unit, a physics unit, an electronic control unit, a space optical frequency comb, and an ultrastable laser, was successfully launched with the Mengtian space laboratory on October 31, 2022, and entered into the China Space Station (CSS). Compact and stable laser is a key element for the operation of the SOC. The optical unit consists of 5 lasers with wavelengths of 461, 679, 689, 707 and 813 nm, respectively. With a synchronous-tuning-like scheme, high-quality external cavity diode lasers (ECDLs) are developed as the seeds. The linewidths of the lasers are all reduced to approximately 100 kHz, and their tuning ranges, free from mode hopping, are capable of reaching 20 GHz, satisfying the requirements for the SOC. With careful mechanical and thermal design, the stability of the laser against vibration and temperature fluctuation is sufficiently promoted to confront the challenge of rocket launching. While the power from the ECDL is sufficient for 679-nm repump laser and 707-nm repump laser, additional injection lock is utilized for the 461-nm laser and 689-nm laser to amplify the power of the seeds to more than 600 mW, so that effective first and second stage Doppler cooling can be achieved. To generate an optical lattice with deep enough potential well, over 800-mW 813-nm lasers are required. Therefore, a semiconductor tapered amplifier is adopted to amplify the seed to more than 2 W, so as to cope with various losses of the coupling optics. The wavelengths and output power values of the 5 lasers are monitored and feedback is controlled by the electronic control unit. All the modules are designed and prepared as orbital replaceable units, which can be easily replaced by astronauts in case failure occurs. Now the lasers are all turned on and operate normally in CSS. More data of the SOC will be obtained in the near future. At present stage, according to our evaluation, the continuous operation time of the SOC is limited by the injection locked lasers, which are relatively vulnerable to mode hopping. Hopefully, this problem can be solved by improving the laser diode preparing technology, or developing fiber lasers with compact frequency conversion modules.
      Corresponding author: Zou Hong-Xin, hxzou@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105368, 62275268).
    [1]

    Mallette L A, White J, Rochat P 2010 IEEE/ION Position, Location and Navigation Symposium Indian Wells, CA, USA, May 4–6, 2010 p11414524

    [2]

    Batori E, Almat N, Affolderbach C, Mileti G 2021 Adv. Space Res. 68 4723Google Scholar

    [3]

    Thornton C L, Border J S 2003 Radiometric Tracking Techniques for Deep-Space Navigation (New York: Wiley-Interscience) pp28–31

    [4]

    Wolf P, Blanchet L 2016 Classical Quantum Gravity 33 035012Google Scholar

    [5]

    Liu, L, Lyu D S, Chen W B, Li T, Qu Q Z, W B, Li L, Ren W Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar

    [6]

    Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T, Ely T A 2021 Nature 595 43

    [7]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S, Vasilyev S, Abou-Jaoudeh C, Mura G, Franzen T, Sterr U, Falke S, Lisdat C, Rasel E, Kulosa A, Bize S, Lodewyck , Tino G M, Poli N, Schioppo M, Bongs K, Singh Y, Gill P, Barwood G, Ovchinnikov Y, Stuhler J, Kaenders W, Braxmaier C, Holzwarth R, Donati A, Lecomte S, Calonico D, Levi F 2012 European Frequency and Time Forum, Gothenburg, Sweden, April 23–27, 2012, p412

    [8]

    Bongs K, Singh, Smith L, He W, Kock O, Swierad D, Hughes J, Schiller S, Alighanbari S, Origlia S, Vogt S, Sterr O, Lisdat C, Le Targat R, Lodewyck J, Holleville D, Venon B, Bize S, Barwood G P, Gill P, Hill I R, Ovchinnikov Y B, Poli N , Tino G M , Stuhler J , Kaenders W 2015 C. R. Phys. 16 553

    [9]

    Khabarova K, Kryuchkov D, Borisenko A, Zalivako I, Semerikov I, Aksenov M, Sherstov I, Abbasov T, Tausenev A, Kolachevsky N 2022 Symmetry 14 2213Google Scholar

    [10]

    Ohmae N, Takamoto M, Takahashi Y, Kokubun M, Araki K, Hinton A, Ushijima I, Muramatsu T, Furumiya T, Sakai Y, Moriya N, Kamiya N, Fujii K, Muramatsu R, Shiimado T, Katori H 2021 Adv. Quantum Technol. 4 2100015Google Scholar

    [11]

    赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏 2018 物理学报 67 050601Google Scholar

    Zhao F J, Gao F, Han J X, Zhou C H, Meng J W, Wang Y B, Guo Y, Zhang S G, Chang H 2018 Acta Phys. Sin. 67 050601Google Scholar

    [12]

    Krebs D J, Novo-Gradac A M, Li S X, Lindauer S J, Afzal R S, Yu A W 2005 Appl. Opt. 44 1715Google Scholar

    [13]

    Yu A W, Krainak M A, Stephen M A, Chen J R, Coyle B, Numata K, Camp J B, Abshire J B, Allan G R, Li S X, Riris H 2012 Fiber Lasers IX: Technology, Systems, and Applications, San Francisco, California, United States, February 15, 2012 p823713

    [14]

    Lévèque T, Faure B, Esnault F, Delaroche C, Massonnet D, Grosjean O, Buffe F, Torresi P, Bomer T, Pichon A, Béraud P, Lelay J, Thomin S, Laurent P 2015 Rev. Sci. Instrum. 86 033104Google Scholar

    [15]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch T, Holzwarth R 2016 Optica 3 1381

    [16]

    Dinkelaker A N, Schiemangk M, Schkolnik V, Kenyon A, Lampmann K, Wenzlawski A, Windpassinger P, Hellmig O, Wendrich T, Rasel E M, Giunta M, Deutsch C, Kürbis C, Smol R, Wicht A, Krutzik M, Peters A 2017 Appl. Opt. 56 1388Google Scholar

    [17]

    Schwarz R, Dorscher S, Al-Masoudi A, Vogt S, Li Y, Lisdat C 2019 Rev. Sci. Instrum. 90 023109Google Scholar

    [18]

    Sottile A, Damiano E, Di Lieto A, Tonelli M 2019 Opt. Lett. 44 594Google Scholar

    [19]

    Meng L Q, Zhao P Y, Meng F C, Long Chen, Xie Y, Wang Y K, Bian W, Jia J J, Liu T, Zhang S G, Wang J Y 2022 Chin. Opt. Lett. 20 021407Google Scholar

    [20]

    邹宏新, 王文海, 詹子豪 2021 国专利 ZL 202110005798.9 [2021-01-05]

    Zou H X, Wang W H, Zhan Z H 2021 CN Patent ZL 202110005798.9 [2021-01-05

    [21]

    邹宏新, 詹子豪, 王文海 2021 中国专利 ZL 202110005871.2 [2021-01-05]

    Zou H X, Zhan Z H, Wang W H 2021 CN Patent ZL 202110005871.9 [2021-01-05

    [22]

    Shaffer M K, Ranjit G, Sukenik C I 2008 Rev. Sci. Instrum. 79 046102

    [23]

    Guo F, Tan W, Zhou C H, Xia J, Chen Y X, Liang T, Liu Q, Liu Y, He D J, Zhou Y Z, Wang W H, Shen Y, Zou H X, Chang H 2021 AIP Adv. 11 125116

  • 图 1  Sr原子空间光钟系统方框图

    Figure 1.  Schematic of Sr atom space optical clock system.

    图 2  Sr原子光钟系统所需6种不同波长激光

    Figure 2.  Lasers at six wavelengths in Sr atom optical clock system.

    图 3  Littman结构类同步调谐ECDL结构图

    Figure 3.  Exploded view of Littman-configuration ECDL with synchronous-tuning-like scheme.

    图 4  Littman结构光栅ECDL的工作原理图(P, 压电陶瓷作用点; θ, 光栅入射角; φ, 光栅一级衍射角; R, 理想旋转半径; L2, 实际旋转半径; h, 调谐点与Y轴的垂直距离; Q, 调谐支点)

    Figure 4.  Functional schematic of Littman-configuration ECDL. (P, PZT action point; θ, grating incident angle; φ, first order diffraction angle of grating; R, ideal rotation radius; L2, actual rotation radius; h, the distance between the pivot point and the Y coordinate axis; Q, pivot point)

    图 5  种子激光器结构装配图

    Figure 5.  Assembly view of seed laser.

    图 6  注入激光器结构装配图

    Figure 6.  Assembly view of injection locked laser.

    图 7  TA放大器结构装配图

    Figure 7.  Assembly view of tapered amplifier.

    图 8  激光系统实物图

    Figure 8.  Pictures of laser system.

    图 9  689 nm激光器拍频锁定前后频谱图

    Figure 9.  Beating signals of 689 nm lasers before (left) and after (right) frequency offset locking.

    图 10  空间光钟电控系统方框图

    Figure 10.  Schematic of electronic control unit of space optical clock.

    图 11  光钟电控单元(左)和主要控制电路(右)实物图

    Figure 11.  Pictures of electronic control unit (left) and main control modules (right).

  • [1]

    Mallette L A, White J, Rochat P 2010 IEEE/ION Position, Location and Navigation Symposium Indian Wells, CA, USA, May 4–6, 2010 p11414524

    [2]

    Batori E, Almat N, Affolderbach C, Mileti G 2021 Adv. Space Res. 68 4723Google Scholar

    [3]

    Thornton C L, Border J S 2003 Radiometric Tracking Techniques for Deep-Space Navigation (New York: Wiley-Interscience) pp28–31

    [4]

    Wolf P, Blanchet L 2016 Classical Quantum Gravity 33 035012Google Scholar

    [5]

    Liu, L, Lyu D S, Chen W B, Li T, Qu Q Z, W B, Li L, Ren W Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar

    [6]

    Burt E A, Prestage J D, Tjoelker R L, Enzer D G, Kuang D, Murphy D W, Robison D E, Seubert J M, Wang R T, Ely T A 2021 Nature 595 43

    [7]

    Schiller S, Gorlitz A, Nevsky A, Alighanbari S, Vasilyev S, Abou-Jaoudeh C, Mura G, Franzen T, Sterr U, Falke S, Lisdat C, Rasel E, Kulosa A, Bize S, Lodewyck , Tino G M, Poli N, Schioppo M, Bongs K, Singh Y, Gill P, Barwood G, Ovchinnikov Y, Stuhler J, Kaenders W, Braxmaier C, Holzwarth R, Donati A, Lecomte S, Calonico D, Levi F 2012 European Frequency and Time Forum, Gothenburg, Sweden, April 23–27, 2012, p412

    [8]

    Bongs K, Singh, Smith L, He W, Kock O, Swierad D, Hughes J, Schiller S, Alighanbari S, Origlia S, Vogt S, Sterr O, Lisdat C, Le Targat R, Lodewyck J, Holleville D, Venon B, Bize S, Barwood G P, Gill P, Hill I R, Ovchinnikov Y B, Poli N , Tino G M , Stuhler J , Kaenders W 2015 C. R. Phys. 16 553

    [9]

    Khabarova K, Kryuchkov D, Borisenko A, Zalivako I, Semerikov I, Aksenov M, Sherstov I, Abbasov T, Tausenev A, Kolachevsky N 2022 Symmetry 14 2213Google Scholar

    [10]

    Ohmae N, Takamoto M, Takahashi Y, Kokubun M, Araki K, Hinton A, Ushijima I, Muramatsu T, Furumiya T, Sakai Y, Moriya N, Kamiya N, Fujii K, Muramatsu R, Shiimado T, Katori H 2021 Adv. Quantum Technol. 4 2100015Google Scholar

    [11]

    赵芳婧, 高峰, 韩建新, 周驰华, 孟俊伟, 王叶兵, 郭阳, 张首刚, 常宏 2018 物理学报 67 050601Google Scholar

    Zhao F J, Gao F, Han J X, Zhou C H, Meng J W, Wang Y B, Guo Y, Zhang S G, Chang H 2018 Acta Phys. Sin. 67 050601Google Scholar

    [12]

    Krebs D J, Novo-Gradac A M, Li S X, Lindauer S J, Afzal R S, Yu A W 2005 Appl. Opt. 44 1715Google Scholar

    [13]

    Yu A W, Krainak M A, Stephen M A, Chen J R, Coyle B, Numata K, Camp J B, Abshire J B, Allan G R, Li S X, Riris H 2012 Fiber Lasers IX: Technology, Systems, and Applications, San Francisco, California, United States, February 15, 2012 p823713

    [14]

    Lévèque T, Faure B, Esnault F, Delaroche C, Massonnet D, Grosjean O, Buffe F, Torresi P, Bomer T, Pichon A, Béraud P, Lelay J, Thomin S, Laurent P 2015 Rev. Sci. Instrum. 86 033104Google Scholar

    [15]

    Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A, Schkolnik V, Schiemangk M, Dinkelaker A, Kohfeldt A, Wicht A, Krutzik M, Peters A, Hellmig O, Duncker H, Sengstock K, Windpassinger P, Lampmann K, Hülsing T, Hänsch T, Holzwarth R 2016 Optica 3 1381

    [16]

    Dinkelaker A N, Schiemangk M, Schkolnik V, Kenyon A, Lampmann K, Wenzlawski A, Windpassinger P, Hellmig O, Wendrich T, Rasel E M, Giunta M, Deutsch C, Kürbis C, Smol R, Wicht A, Krutzik M, Peters A 2017 Appl. Opt. 56 1388Google Scholar

    [17]

    Schwarz R, Dorscher S, Al-Masoudi A, Vogt S, Li Y, Lisdat C 2019 Rev. Sci. Instrum. 90 023109Google Scholar

    [18]

    Sottile A, Damiano E, Di Lieto A, Tonelli M 2019 Opt. Lett. 44 594Google Scholar

    [19]

    Meng L Q, Zhao P Y, Meng F C, Long Chen, Xie Y, Wang Y K, Bian W, Jia J J, Liu T, Zhang S G, Wang J Y 2022 Chin. Opt. Lett. 20 021407Google Scholar

    [20]

    邹宏新, 王文海, 詹子豪 2021 国专利 ZL 202110005798.9 [2021-01-05]

    Zou H X, Wang W H, Zhan Z H 2021 CN Patent ZL 202110005798.9 [2021-01-05

    [21]

    邹宏新, 詹子豪, 王文海 2021 中国专利 ZL 202110005871.2 [2021-01-05]

    Zou H X, Zhan Z H, Wang W H 2021 CN Patent ZL 202110005871.9 [2021-01-05

    [22]

    Shaffer M K, Ranjit G, Sukenik C I 2008 Rev. Sci. Instrum. 79 046102

    [23]

    Guo F, Tan W, Zhou C H, Xia J, Chen Y X, Liang T, Liu Q, Liu Y, He D J, Zhou Y Z, Wang W H, Shen Y, Zou H X, Chang H 2021 AIP Adv. 11 125116

  • [1] Chen Xue-Li, Xia Lu-Yuan, Wang Zhi-Hui, Duan Li-Xia. Analysis of mixed rhythm and its dynamics in closed-loop respiratory control system driven by electromagnetic induction. Acta Physica Sinica, 2024, 73(18): 180502. doi: 10.7498/aps.73.20240847
    [2] Liao Qiu-Yu, Hu Heng-Jie, Chen Mao-Wei, Shi Yi, Zhao Yuan, Hua Chun-Bo, Xu Si-Liu, Fu Qi-Dong, Ye Fang-Wei, Zhou Qin. Two-dimensional spatial optical solitons in Rydberg cold atomic system under the action of optical lattice. Acta Physica Sinica, 2023, 72(10): 104202. doi: 10.7498/aps.72.20230096
    [3] Liu Yao, He Jun, Su Nan, Cai Ting, Liu Zhi-Hui, Diao Wen-Ting, Wang Jun-Min. A 509 nm pulsed laser system for Rydberg excitation of cesium atoms. Acta Physica Sinica, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [4] Liu Chao, Zhang Ai-Bing, Sun Yue-Qiang, Kong Ling-Gao, Wang Wen-Jing, Guan Yi-Bing, Wang Yong-Song, Zheng Xiang-Zhi, Tian Zheng, Gao Jun. Plasma in-situ imaging detection technology on China’s Space Station Wentian module. Acta Physica Sinica, 2023, 72(4): 049401. doi: 10.7498/aps.72.20221759
    [5] Zhong Yin-Yin, Pan Xiao-Zhou, Jing Jie-Tai. Quantum entanglement in coherent feedback system based on the cascaded four wave mixing processes. Acta Physica Sinica, 2020, 69(13): 130301. doi: 10.7498/aps.69.20200042
    [6] Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming. Magnetic excitation of ultra-cold atoms trapped in optical lattice. Acta Physica Sinica, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [7] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [8] Wang Jin, Wei Zheng-Jun, Wang Geng, Guo Li, Wang Jin-Dong, Zhang Zhi-Ming, Guo Jian-Ping, Guo Bang-Hong, Liu Song-Hao. Influence of digital averaging on the signal-to-noise improvement ratio of temperature control system used in single-photon detector at infrared wavelength. Acta Physica Sinica, 2013, 62(1): 014203. doi: 10.7498/aps.62.014203
    [9] Guo You-Ming, Ma Xiao-Yu, Rao Chang-Hui. Modified effective bandwidths of adaptive optical control systems for compensation in Kolmogorov turbulence. Acta Physica Sinica, 2013, 62(13): 134207. doi: 10.7498/aps.62.134207
    [10] Zhu Min-Hao, Wu Xue-Jian, Wei Hao-Yun, Zhang Li-Qiong, Zhang Ji-Tao, Li Yan. Closed-loop displacement control system for piezoelectric transducer based on optical frequency comb. Acta Physica Sinica, 2013, 62(7): 070702. doi: 10.7498/aps.62.070702
    [11] Yang Ming, Li Xiang-Lian, Wu Da-Jin. Simulation study on the stochastic resonance of single-mode laser system. Acta Physica Sinica, 2012, 61(16): 160502. doi: 10.7498/aps.61.160502
    [12] Han Jian, Bayanheshig, Li Wen-Hao. The ratio choice method of the pinhole aperture to the waist of the Gaussian laser in the fabrication of holographic gratings. Acta Physica Sinica, 2012, 61(8): 084202. doi: 10.7498/aps.61.084202
    [13] Lin Hong-Huan, Jiang Dong-Bin, Wang Jian-Jun, Li Ming-Zhong, Zhang Rui, Deng Ying, Xu Dang-Peng, Dang Zhao. Laser time fiducial for precise physical experiment in Shenguang-Ⅲ prototype facility. Acta Physica Sinica, 2011, 60(2): 025208. doi: 10.7498/aps.60.025208
    [14] Wang Xiao-Lin, Zhou Pu, Ma Yan-Xing, Ma Hao-Tong, Xu Xiao-Jun, Liu Ze-Jin, Zhao Yi-Jun. High precision phase control system in coherent combining of fiber laser based on stochastic parallel gradient descent algorithm. Acta Physica Sinica, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [15] Liu Lan-Qin, Mo Lei, Luo Bin, Su Jing-Qin, Wang Wen-Yi, Wang Fang, Jing Feng, Wei Xiao-Feng. Amplification of hybrid-widen linewidth of broadband pulses in Nd:glass laser systems. Acta Physica Sinica, 2009, 58(6): 4307-4312. doi: 10.7498/aps.58.4307
    [16] Wang Hong_Po, Li Jie. Sub-harmonic resonances of the non-autonomous system with delayed position feedback control. Acta Physica Sinica, 2007, 56(5): 2504-2516. doi: 10.7498/aps.56.2504
    [17] Wei Dong, Chen Hai-Xia, Xiong De-Zhi, Zhang Jing. A laser diode system for 40K-87Rb atomic cooling. Acta Physica Sinica, 2006, 55(12): 6342-6346. doi: 10.7498/aps.55.6342
    [18] Ji Xiao-Ling, Tao Xiang-Yang, Lü Bai-Da. The influence of thermal effects in a beam control system and spherical aberration on the laser beam quality. Acta Physica Sinica, 2004, 53(3): 952-960. doi: 10.7498/aps.53.952
    [19] FAN XI-JUN, TIAN SHU-FEN, LI JIAN, LIU JIE, BAI CHENG-JIE. TIME EVOLUTION OF ATOMIC RESPONSE AND LIGHT AMPLIFICATION MECHANISM IN AN OPEN I NVERSIONLESS LASING SYSTEM. Acta Physica Sinica, 2000, 49(9): 1719-1725. doi: 10.7498/aps.49.1719
    [20] WANG GUI-YING, ZHAO JIO-YIAN, ZHANG MING-KE, FAN DIAN-YIAN, GUI ZHAI-QUAN. BASIC STUDY ON SPATIAL FILTER USED IN Nd-GLASS HIGH POWER LASER SYSTEM. Acta Physica Sinica, 1985, 34(2): 171-181. doi: 10.7498/aps.34.171
Metrics
  • Abstract views:  5494
  • PDF Downloads:  240
  • Cited By: 0
Publishing process
  • Received Date:  18 March 2023
  • Accepted Date:  26 April 2023
  • Available Online:  06 June 2023
  • Published Online:  20 September 2023

/

返回文章
返回