Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of mixed rhythm and its dynamics in closed-loop respiratory control system driven by electromagnetic induction

Chen Xue-Li Xia Lu-Yuan Wang Zhi-Hui Duan Li-Xia

Citation:

Analysis of mixed rhythm and its dynamics in closed-loop respiratory control system driven by electromagnetic induction

Chen Xue-Li, Xia Lu-Yuan, Wang Zhi-Hui, Duan Li-Xia
cstr: 32037.14.aps.73.20240847
PDF
HTML
Get Citation
  • The pre-Bötzinger complex is a crucial region for generating respiratory rhythms in mammals. Peripheral chemoreceptors have a significant influence on respiratory rhythm by monitoring changes in blood oxygen concentration and carbon dioxide concentration. This study introduces a closed-loop respiratory control model, which is driven by electromagnetic induction and based on the activation of pre-Bötzinger complex neurons. The model incorporates various factors including the motor pool, lung volume, lung oxygen, blood oxygen, and chemoreceptors. The response of the system subjected to the same hypoxic perturbation under different electromagnetic induction is studied, and the control effect of magnetic flux feedback coefficient on the recovery of mixed rhythms is investigated. Using bifurcation analysis and numerical simulations, it is found that the magnetic flux feedback coefficient has a significant influence on the ability to recover respiratory rhythm. The dynamic mechanism of the magnetic flux feedback coefficient on different hypoxic responses in closed-loop systems are revealed. Dynamic analysis indicates that under certain electromagnetic induction, the mixed bursting rhythm in the closed-loop system can autoresuscitate if the bifurcation structure before and after applying hypoxia perturbation are completely identical. However, when the bifurcation structure before and after applying hypoxia perturbation are different, the mixed bursting rhythm in the system cannot autoresuscitate. In addition, for the cases where automatic recovery is not achieved under mild electromagnetic induction, increasing the magnetic flux feedback coefficient appropriately can lead the system to autoresuscitate, which is closely related to the Hopf bifurcation and fold bifurcation of limit cycle. This study contributes to understanding the influence of the interaction between the central respiratory and peripheral chemoreceptive feedback on respiratory rhythm, as well as the control effect of external induction on the hypoxic response.
      Corresponding author: Duan Li-Xia, duanlx@ncut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12272002) and the Campus Talent Training Program of North China University of Technology, China (Grant Nos. 2023XN075-01, 2023YZZKY19).
    [1]

    Smith J C, Ellenberger H H, Ballanyi K, Richter D W, Feldman J L 1991 Science 254 726Google Scholar

    [2]

    Diekman C O, Thomas P J, Wilson C G 2024 Biol. Cybern. 118 145Google Scholar

    [3]

    李胜岐 2008 呼吸系统与疾病 (上海: 上海科学技术出版社) 第29—36页

    Li S Q 2008 Respiratory System and Illness (Shanghai: Shanghai Science and Technology Press) pp29–36

    [4]

    Diekman C O, Thomas P J, Wilson C G 2017 J. Neurophysiol. 118 2194Google Scholar

    [5]

    Del Negro C A, Funk G D, Feldman J L 2018 Nat. Rev. Neurosci. 19 351Google Scholar

    [6]

    Diekman C O, Wilson C G, Thomas P J 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) San Diego, California USA, August 28–September 1, 2012 p6669

    [7]

    Ge M Y, Jia Y, Xu Y, Yang L J 2018 Nonlinear Dyn. 91 515Google Scholar

    [8]

    Zhang Y, Xu Y, Yao Z, Ma J 2020 Nonlinear Dyn. 102 1849Google Scholar

    [9]

    Duan L X, Cao Q Y, Wang Z J, Su J Z 2018 Nonlinear Dyn. 94 1961Google Scholar

    [10]

    Mostaghimi S, Nazarimehr F, Jafari S, Ma J 2019 Appl. Math. Comput. 348 42Google Scholar

    [11]

    Liu Y, Ma J, Xu Y, Jia Y 2019 Int. J. Bifurc. Chaos 29 1950156Google Scholar

    [12]

    赵晴晴, 刘深泉, 孟盼 2023 云南大学学报(自然科学版) 45 1238Google Scholar

    Zhao Q, Liu S, Meng P 2023 J. Yunnan Univ. Nat. Sci. Ed. 45 1238Google Scholar

    [13]

    Zhao J Y, Wang Q Y 2021 Nonlinear Dyn. 106 975Google Scholar

    [14]

    赵雅琪, 刘谋天, 赵勇, 段利霞 2021 物理学报 70 120501Google Scholar

    Zhao Y Q, Liu M T, Zhao Y, Duan L X 2021 Acta Phys. Sin. 70 120501Google Scholar

    [15]

    梁艳美, 陆博, 古华光 2022 物理学报 71 230502Google Scholar

    Liang Y M, Lu B, Gu H G 2022 Acta Phys. Sin. 71 230502Google Scholar

    [16]

    黎丽, 赵志国, 古华光 2022 物理学报 71 050504Google Scholar

    Li L, Zhao Z G, Gu H G 2022 Acta Phys. Sin. 71 050504Google Scholar

    [17]

    Izhikevich E M 2000 Int. J. Bifurc. Chaos 10 1171Google Scholar

    [18]

    冀文超, 段利霞, 齐会如 2021 力学学报 53 1733Google Scholar

    Ji W C, Duan L X, Qi H R 2021 Chin. J. Theor. Appl. Mech. 53 1733Google Scholar

    [19]

    Liu H, Yang Z Q, Yang B J 2023 Nonlinear Dyn. 111 15417Google Scholar

    [20]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549Google Scholar

    [21]

    Liu M T, Duan L X 2022 Elec. Res. Arch. 30 961Google Scholar

    [22]

    Ji W C, Liu M T, Duan L X 2021 Neural Plast. 2021 6655933Google Scholar

    [23]

    Park C, Rubin J E 2013 J. Comput. Neurosci. 34 345Google Scholar

    [24]

    Diekman C O, Thomas P J, Wilson C G 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, July 18–21, 2018 p5273

  • 图 1  电磁感应驱动下闭环系统每个变量相对速度的相位图, 绿点表示每个变量的最大相对速度, 参数值见附录A

    Figure 1.  Phase diagram of relative speed of each variable in a closed-loop system driven by electromagnetic induction. Green dots indicate the maximum rate $ {v_x} $ of each variable. Defaulted parameter values are shown in Appendix A.

    图 2  电磁感应驱动下闭环系统的缺氧反应($ {g_{{\text{NaP}}}} $= 2.3 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.3 μmol/L, $ {k_{1}} $= 0.1) (a)系统的轨迹; (b)系统的缺氧反应; 当$ {k_{1}} $= 0.1时, 系统可以自动恢复

    Figure 2.  Response to transient hypoxia in a closed-loop system driven by electromagnetic induction with $ {g_{{\text{NaP}}}} $ = 2.3 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.3 μmol/L and $ {k_{1}} $= 0.1: (a) Traces from the system during eupneic bursting; (b) traces after a hypoxic perturbation. When $ {k_{1}} $ = 0.1, the system can automatically recover.

    图 3  电磁感应驱动下闭环系统缺的氧反应($ {g_{{\text{NaP}}}} $ = 2.3 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.3 μmol/L, $ {k_{1}} $ = 0.5) (a)系统的轨迹; (b)系统的缺氧反应; 当$ {k_{1}} $= 0.5时, 系统仍可自动恢复

    Figure 3.  Response to transient hypoxia in a closed-loop system driven by electromagnetic induction with $ {g_{{\text{NaP}}}} $ = 2.3 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.3 μmol/L and $ {k_{1}} $ = 0.5: (a) Traces from the system during eupneic bursting; (b) traces after a hypoxic perturbation. When $ {k_{1}} $ = 0.5, the system can also recover automatically.

    图 4  电磁感应驱动下闭环系统的缺氧反应($ {g_{{\text{NaP}}}} $ = 2.3 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.3 μmol/L, $ {k_{1}} $=1) (a)系统的轨迹; (b)系统的缺氧反应; 当$ {k_{1}} $ = 1时, 系统却不能自动恢复

    Figure 4.  Response to transient hypoxia in a closed-loop system driven by electromagnetic induction with $ {g_{{\text{NaP}}}} $ = 2.3 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.3 μmol/L and $ {k_{1}} $= 1: (a) Traces from the system during eupneic bursting; (b) traces after a hypoxic perturbation. When $ {k_{1}} $ = 1, the system cannot automatically recover.

    图 5  不同磁流反馈系数$ {k_1} $下, 快子系统的单参数分岔分析, 其中SN, Hopf, LPC, HC和SNIC点分别表示鞍结分岔点、Hopf分岔点、极限环的鞍结分岔点、同宿轨分岔点和不变圆上的鞍结分岔点, 这里(a1)—(a4) $ {k_1} $= 0.1; (b1)—(b4) $ {k_1} $= 0.5; (c1)—(c4) $ {k_1} $= 1

    Figure 5.  One-parameter bifurcation analysis of the fast sub-system under different magnetic current feedback coefficients $ {k_1} $. The points SN, Hopf, LPC, HC and SNIC represent the fold bifurcation, Hopf bifurcation, fold bifurcation of limit cycle, homoclinic bifurcation and saddle-node bifurcation on an invariant circle, respectively. (a1)–(a4) $ {k_1} $= 0.1; (b1)–(b4) $ {k_1} $= 0.5; (c1)–(c4) $ {k_1} $= 1.

    图 6  不同磁流反馈系数$ {k_1} $下, 快子系统的双参数分岔分析, 其中左栏为缺氧干扰前的双参数分岔, 中栏为缺氧干扰后的双参数分岔, 右栏为缺氧干扰后, 系统稳定了的双参数分岔, 这里(a) $ {k_1} $= 0.1; (b) $ {k_1} $= 0.5; (c) $ {k_1} $= 1

    Figure 6.  Two-parameter bifurcation analysis of the fast sub-system under different magnetic current feedback coefficients $ {k_1} $. Left is two-parameter bifurcation during eupneic bursting, middle is two-parameter bifurcation after a hypoxic perturbation, right is two-parameter bifurcation of the system stabilized after a hypoxic perturbation. (a) $ {k_1} $ = 0.1; (b) $ {k_1} $ = 0.5; (c) $ {k_1} $= 1.

    图 7  电磁感应驱动下的闭环系统($ {g_{{\text{NaP}}}} $= 3.2 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.1 μmol/L, $ {k_{1}} $ = 0.1) (a)系统的轨迹; (b)系统的缺氧反应; 当$ {k_{1}} $ = 0.1时, 系统不能自动恢复

    Figure 7.  Response to transient hypoxia in a closed-loop system driven by electromagnetic induction with $ {g_{{\text{NaP}}}} $ = 3.2 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.1 μmol/L and $ {k_{1}} $ = 0.1: (a) Traces from the system during eupneic bursting; (b) traces after a hypoxic perturbation. When $ {k_{1}} $= 0.1, the system cannot automatically recover.

    图 8  电磁感应驱动下的闭环系统( $ {g_{{\text{NaP}}}} $ = 3.2 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.1 μmol/L, $ {k_{1}} $ = 0.5) (a)系统的轨迹; (b)系统的缺氧反应; 当$ {k_{1}} $ = 0.5时, 系统却能自动恢复

    Figure 8.  Imposed hypoxic event in a closed-loop system driven by electromagnetic induction with $ {g_{{\text{NaP}}}} $ = 3.2 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.1 μmol/L and $ {k_{1}} $= 0.5: (a) Traces from the system during eupneic bursting; (b) traces after a hypoxic perturbation. When $ {k_{1}} $ = 0.5, the system can automatically recover.

    图 9  电磁感应驱动下的闭环系统($ {g_{{\text{NaP}}}} $ = 3.2 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.1 μmol/L, $ {k_{1}} $= 0.9) (a)系统的轨迹; (b)系统的缺氧反应; 当$ {k_{1}} $= 0.9时, 系统不能自动恢复

    Figure 9.  Imposed hypoxic event in a closed-loop system driven by electromagnetic induction with $ {g_{{\text{NaP}}}} $ = 3.2 ns, $ \left[ {{\text{I}}{{\text{P}}_3}} \right] $ = 1.1 μmol/L and $ {k_{1}} $ = 0.9: (a) Traces from the system during eupneic bursting; (b) traces after a hypoxic perturbation. When $ {k_{1}} $ = 0.9, the system can not automatically recover.

    图 10  不同磁流反馈系数$ {k_1} $下, 快子系统的单参数分岔分析 (a1)—(a4) $ {k_1} $ = 0.1; (b1)—(b4) $ {k_1} $ = 0.5; (c1)—(c4) $ {k_1} $ = 0.9

    Figure 10.  Single-parameter bifurcation analysis of the fast sub-system under different magnetic current feedback coefficients $ {k_1} $: (a1)–(a4) $ {k_1} $ = 0.1; (b1)–(b4) $ {k_1} $ = 0.5; (c1)–(c4) $ {k_1} $ = 0.9.

    图 11  不同磁流反馈系数$ {k_1} $下, 快子系统的双参数分岔分析, 其中左栏为缺氧干扰前的双参数分岔, 中栏为施加缺氧干扰后的双参数分岔, 右栏为施加缺氧干扰后, 系统稳定了的双参数分岔, 这里(a) $ {k_1} $ = 0.1; (b) $ {k_1} $ = 0.5; (c) $ {k_1} $ = 0.9

    Figure 11.  Two-parameter bifurcation analysis of the fast sub-system under different magnetic current feedback coefficients $ {k_1} $. Left panel is two-parameter bifurcation during eupneic bursting, middle panel is two-parameter bifurcation after a hypoxic perturbation, right panel is two-parameter bifurcation of the system stabilized after a hypoxic perturbation. (a) $ {k_1} $= 0.1; (b) $ {k_1} $= 0.5; (c) $ {k_1} $= 0.9.

    图 12  $ {k_1} $= 0.1时缺氧扰动后系统不能恢复情形下, 增大磁流反馈系数后的反应, 其中黑色和蓝色曲线是$ {k_1} $ = 0.1作用下缺氧扰动前后的时间序列图, 红色曲线是增大磁流反馈系数后的时间序列, 这里(a) $ {k_1} $= 0.2; (b) $ {k_1} $= 0.7; (c) $ {k_1} $= 0.9

    Figure 12.  Response to transient hypoxia in a closed-loop system with the increasing magnetic current feedback coefficient , which the system does not recover after a hypoxic perturbation at $ {k_{1}} $= 0.1. The black and blue curves are time series before and after the hypoxic perturbation at $ {k_1} $= 0.1, and the red curve is the time series after increasing the magnetic current feedback coefficient. (a) $ {k_1} $= 0.2; (b) $ {k_1} $= 0.7; (c) $ {k_1} $= 0.9.

    图 13  电磁感应驱动下缺氧扰动前后的单参数分岔分析 (a) $ {k_1} $= 0.1, 缺氧扰动前; (b) $ {k_1} $= 0.1, 缺氧扰动后; (c) $ {k_1} $ = 0.2, h = 0.0667; (d) $ {k_1} $ = 0.1时缺氧扰动前后以及$ {k_1} $= 0.2的叠加图; (e) $ {k_1} $ = 0.7, h = 0.0216; (f) $ {k_1} $= 0.1时缺氧扰动前后以及$ {k_1} $= 0.7的叠加图; (g) $ {k_1} $= 0.9, h = 0.0094; (h) $ {k_1} $= 0.1时缺氧扰动前后以及$ {k_1} $= 0.9的叠加图

    Figure 13.  One-parameter bifurcation analysis with before and after hypoxic perturbation driven by electromagnetic induction: (a) Bifurcation structure during eupneic bursting with $ {k_1} $= 0.1; (b) bifurcation structure after a hypoxic perturbation with $ {k_1} $= 0.1; (c) $ {k_1} $= 0.2, h = 0.0667; (d) bifurcation diagrams superposed with before and after hypoxic perturbation when $ {k_1} $= 0.1 and 0.2; (e) $ {k_1} $= 0.7, h = 0.0216; (f) bifurcation diagrams superposed with before and after hypoxic perturbation when $ {k_1} $= 0.1 and 0.7; (g) $ {k_1} $= 0.9, h = 0.0094; (h) bifurcation diagrams superposed with before and after hypoxic perturbation when $ {k_1} $= 0.1 and 0.9.

    图 14  电磁感应驱动下系统的能量变化 (a) $ {k_1} $ = 0.1, 0.2, 0.7, 0.9时能量随时间的变化; (b) 图(a)的放大图; 参数设置同图12

    Figure 14.  Evolution of the energy driven by electromagnetic induction: (a) Evolution of the energy with the parameter $ {k_1} $= 0.1, 0.2, 0.7 and 0.9; (b) the enlargement part of (a). The parameter values are same as that in Fig. 12.

    表 1  电磁感应驱动下闭环模型各个变量的最大相对速度

    Table 1.  The maximum relative speed of each variable in a closed-loop model driven by electromagnetic induction.

    变量 $x$ ${\text{vo}}{{\text{l}}_{\text{L}}}$ $ {{\text{P}}_{\text{a}}}{{\text{O}}_{2}} $ l $ {{\text{P}}_{\text{A}}}{{\text{O}}_{2}} $ h
    ${v_x}$ 0.0009 0.0009 0.0019 0.0020 0.0057
    变量 $x$ $\alpha $ [Ca] $ \varphi $ V n
    ${v_x}$ 0.0415 0.0500 0.3513 0.3601 0.4631
    DownLoad: CSV

    表 A1  模型(1)—(11)的参数值

    Table A1.  Parameter values of models (1)—(11).

    参数 取值 参数 取值 参数 取值
    C/μF 21 EK/mV –85 $ E_{{\mathrm{L}}} $/mV –58
    ${E_{{\text{Na}}}}$ 50 ${E_{{\text{tonic}}}}$/mV 0 ${g_{\text{K}}}$/nS 3.5
    ${g_{\text{L}}}$/nS 2.3 ${g_{{\text{NaP}}}}$/nS varied ${g_{{\text{Na}}}}$/nS 8
    ${\theta _m}$/mV –34 ${\sigma _m}$/mV –5 ${\theta _n}$/mV –29
    ${\sigma _n}$/mV –4 ${\overline \tau _n}$/mV 10 ${\theta _h}$/mV –48
    ${\sigma _h}$/mV 5 ${\overline \tau _h}$/mV 10000 ${\theta _p}$/mV –40
    $ {\sigma _p} $/mV –6 ${K_{{\text{CAN}}}}$/(μmol·L–1) 0.74 ${n_{{\text{CAN}}}}$ 0.97
    ${L_{{\text{I}}{{\text{P}}_{3}}}}$/($ {{\mathrm{p}}{\mathrm{L}}}^{-1}\cdot {{\mathrm{s}}}^{-1} $) 0.27 ${P_{{\text{I}}{{\text{P}}_{3}}}}$/($ {{\mathrm{p}}{\mathrm{L}}}^{-1}\cdot {{\mathrm{s}}}^{-1} $) 31000 $\left[ {{\text{I}}{{\text{P}}_3}} \right]$/(μmol·L–1) varied
    ${K_{\text{I}}}$/(μmol·L–1) 1.0 ${K_{\text{a}}}$/(μmol·L–1) 0.4 ${{\text{[Ca]}}_{{\text{Tot}}}}$/(μmol·L–1) 1.25
    $\sigma $ 0.185 ${V_{{\text{SERCA}}}}$/(amol·s–1) 400 ${K_{{\text{SERCA}}}}$/(μmol·L–1) 0.2
    ${f_m}$/$ {{\mathrm{p}}{\mathrm{L}}}^{-1} $ 0.000025 A/(μmol–1·L·s–1) 0.001 ${K_d}$/(μmol·L–1) 0.4
    ${r_a}$/(mmol–1·L·ms–1) 0.001 ${r_d}$/(mmol–1·L·ms–1) 0.001 ${T_{\max }}$/(mmol·L–1) 1
    ${V_T}$/mV 2 ${K_P}$/mV 5 ${E_1}$/($ {{\mathrm{m}}{\mathrm{s}}}^{-1} $) 0.0025
    ${E_2}$/$ {{\mathrm{m}}{\mathrm{s}}}^{-1} $ 0.4 ${\text{vo}}{{\text{l}}_{0}}$/L 2 ${{\text{P}}_{{\text{ext}}}}{{\text{O}}_{2}}$/mmHg 149.7
    ${\tau _{{\text{LB}}}}$/ms 500 R/($ {\mathrm{L}}\cdot {\mathrm{ }}{\mathrm{m}}{\mathrm{m}}{\mathrm{H}}{\mathrm{g}}\cdot {{\mathrm{K}}}^{-1}\cdot {{\mathrm{m}}{\mathrm{o}}{\mathrm{l}}}^{-1} $) 62.364 T/K 310
    M/$ {{\mathrm{m}}{\mathrm{s}}}^{-1} $ 8×10–6 ${\beta _{{{\text{O}}_{2}}}}$/($ {\mathrm{m}}{\mathrm{l}}{{\mathrm{O}}}_{2}\cdot {\mathrm{l}}{{\mathrm{b}}{\mathrm{l}}{\mathrm{o}}{\mathrm{o}}{\mathrm{d}}}^{-1}\cdot {{\mathrm{m}}{\mathrm{m}}{\mathrm{H}}{\mathrm{g}}}^{-1} $) 0.03 c 2.5
    K/mmHg 26 ${\text{vo}}{{\text{l}}_{\text{B}}}$/L 5 [Hb]/(g·L–1) 150
    $\phi $/nS 0.3 ${\theta _{\text{g}}}$/mmHg 85 ${\sigma _{\text{g}}}$/mmHg 30
    DownLoad: CSV
  • [1]

    Smith J C, Ellenberger H H, Ballanyi K, Richter D W, Feldman J L 1991 Science 254 726Google Scholar

    [2]

    Diekman C O, Thomas P J, Wilson C G 2024 Biol. Cybern. 118 145Google Scholar

    [3]

    李胜岐 2008 呼吸系统与疾病 (上海: 上海科学技术出版社) 第29—36页

    Li S Q 2008 Respiratory System and Illness (Shanghai: Shanghai Science and Technology Press) pp29–36

    [4]

    Diekman C O, Thomas P J, Wilson C G 2017 J. Neurophysiol. 118 2194Google Scholar

    [5]

    Del Negro C A, Funk G D, Feldman J L 2018 Nat. Rev. Neurosci. 19 351Google Scholar

    [6]

    Diekman C O, Wilson C G, Thomas P J 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) San Diego, California USA, August 28–September 1, 2012 p6669

    [7]

    Ge M Y, Jia Y, Xu Y, Yang L J 2018 Nonlinear Dyn. 91 515Google Scholar

    [8]

    Zhang Y, Xu Y, Yao Z, Ma J 2020 Nonlinear Dyn. 102 1849Google Scholar

    [9]

    Duan L X, Cao Q Y, Wang Z J, Su J Z 2018 Nonlinear Dyn. 94 1961Google Scholar

    [10]

    Mostaghimi S, Nazarimehr F, Jafari S, Ma J 2019 Appl. Math. Comput. 348 42Google Scholar

    [11]

    Liu Y, Ma J, Xu Y, Jia Y 2019 Int. J. Bifurc. Chaos 29 1950156Google Scholar

    [12]

    赵晴晴, 刘深泉, 孟盼 2023 云南大学学报(自然科学版) 45 1238Google Scholar

    Zhao Q, Liu S, Meng P 2023 J. Yunnan Univ. Nat. Sci. Ed. 45 1238Google Scholar

    [13]

    Zhao J Y, Wang Q Y 2021 Nonlinear Dyn. 106 975Google Scholar

    [14]

    赵雅琪, 刘谋天, 赵勇, 段利霞 2021 物理学报 70 120501Google Scholar

    Zhao Y Q, Liu M T, Zhao Y, Duan L X 2021 Acta Phys. Sin. 70 120501Google Scholar

    [15]

    梁艳美, 陆博, 古华光 2022 物理学报 71 230502Google Scholar

    Liang Y M, Lu B, Gu H G 2022 Acta Phys. Sin. 71 230502Google Scholar

    [16]

    黎丽, 赵志国, 古华光 2022 物理学报 71 050504Google Scholar

    Li L, Zhao Z G, Gu H G 2022 Acta Phys. Sin. 71 050504Google Scholar

    [17]

    Izhikevich E M 2000 Int. J. Bifurc. Chaos 10 1171Google Scholar

    [18]

    冀文超, 段利霞, 齐会如 2021 力学学报 53 1733Google Scholar

    Ji W C, Duan L X, Qi H R 2021 Chin. J. Theor. Appl. Mech. 53 1733Google Scholar

    [19]

    Liu H, Yang Z Q, Yang B J 2023 Nonlinear Dyn. 111 15417Google Scholar

    [20]

    Zhao Z G, Jia B, Gu H G 2016 Nonlinear Dyn. 86 1549Google Scholar

    [21]

    Liu M T, Duan L X 2022 Elec. Res. Arch. 30 961Google Scholar

    [22]

    Ji W C, Liu M T, Duan L X 2021 Neural Plast. 2021 6655933Google Scholar

    [23]

    Park C, Rubin J E 2013 J. Comput. Neurosci. 34 345Google Scholar

    [24]

    Diekman C O, Thomas P J, Wilson C G 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, July 18–21, 2018 p5273

  • [1] Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng. Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields. Acta Physica Sinica, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] Ding Da-Wei, Wang Mou-Yuan, Wang Jin, Yang Zong-Li, Niu Yan, Wang Wei. Dynamic behaviors analysis of fraction-order neural network under memristive electromagnetic induction. Acta Physica Sinica, 2024, 73(10): 100502. doi: 10.7498/aps.73.20231792
    [3] Liu Jian-Ji, Liu Jia-Chen, Zhang Guo-Quan. Optical image addition and subtraction based on electromagnetically induced transparency effect. Acta Physica Sinica, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [4] Pei Li-Ya, Zheng Shi-Yang, Niu Jin-Yan. Λ-type electromagnetically induced transparency and absorption by controlling atomic coherence. Acta Physica Sinica, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [6] Niu Shuai, Shuai Jian-Wei, Qi Hong. Modeling of Bcl-2 protein suppressed calcium signaling and its global dynamics analysis. Acta Physica Sinica, 2017, 66(23): 238701. doi: 10.7498/aps.66.238701
    [7] Bai Jin-Hai, Lu Xiao-Gang, Miao Xing-Xu, Pei Li-Ya, Wang Meng, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Fu Pan-Ming, Zuo Zhan-Chun. Analysis on the absorption curve asymmetry of electromagnetically induced transparency in Rb87 cold atoms. Acta Physica Sinica, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [8] Xia Xiao-Fei, Wang Jun-Song. Influence of synaptic plasticity on dynamics of neural mass model:a bifurcation study. Acta Physica Sinica, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [9] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [10] Yu Miao, Zhang Yan, Fang Bo, Gao Jun-Yan, Gao Jin-Wei, Wu Jin-Hui. Generation and control of electromagnetically induced double photonic band-gaps. Acta Physica Sinica, 2012, 61(13): 134204. doi: 10.7498/aps.61.134204
    [11] She Yan-Chao, Zhang Wei-Xi, Wang Deng-Long. Nonlinear Faraday rotation in electromagnetically induce transparency medium. Acta Physica Sinica, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [12] Wang Li, Lu Cheng. Theoretical study of nonlinear electromagnetically induced absorption in four-level atomic system. Acta Physica Sinica, 2011, 60(4): 044203. doi: 10.7498/aps.60.044203
    [13] Wang Li, Li Gen-Quan, Xiao Shao-Wu, Zheng Chang-Bo. Phase control of electromagnetically induced absorption in four-level atomic system. Acta Physica Sinica, 2010, 59(12): 8512-8517. doi: 10.7498/aps.59.8512
    [14] She Yan-Chao, Wang Deng-Long, Ding Jian-Wen. Spatial weak-light ring dark solitons in an electromagnetically induced transparency medium. Acta Physica Sinica, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [15] Zhang Tao. A cause of energy exchange between light and electron. Acta Physica Sinica, 2009, 58(1): 234-237. doi: 10.7498/aps.58.234
    [16] Zhang Ming-Xiao, Tian Xue-Lei, Guo Feng-Xiang. Design and application of a device based on electromagnetic induction principle for electrical resistivity qualitative measurement of liquid and solid metals. Acta Physica Sinica, 2009, 58(9): 6080-6085. doi: 10.7498/aps.58.6080
    [17] Zhang Qing, Wang Jie-Zhi, Chen Zeng-Qiang, Yuan Zhu-Zhi. The bifurcation analysis of a conjugate Chen chaotic system and the hyperchaos generation based on the system. Acta Physica Sinica, 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [18] Zheng Jun, Liu Zheng-Dong, Zeng Fu-Hua, Fang Hui-Juan. Electromagnetically induced left-handedness with vacuum-induced coherence. Acta Physica Sinica, 2008, 57(12): 7658-7662. doi: 10.7498/aps.57.7658
    [19] Zhuang Fei, Shen Jian-Qi, Ye Jun. Controlling the photonic bandgap structures via manipulation of refractive index of electromagnetically induced transparency vapor. Acta Physica Sinica, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [20] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
Metrics
  • Abstract views:  1262
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2024
  • Accepted Date:  19 July 2024
  • Available Online:  23 August 2024
  • Published Online:  20 September 2024

/

返回文章
返回