Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Plasma in-situ imaging detection technology on China’s Space Station Wentian module

Liu Chao Zhang Ai-Bing Sun Yue-Qiang Kong Ling-Gao Wang Wen-Jing Guan Yi-Bing Wang Yong-Song Zheng Xiang-Zhi Tian Zheng Gao Jun

Citation:

Plasma in-situ imaging detection technology on China’s Space Station Wentian module

Liu Chao, Zhang Ai-Bing, Sun Yue-Qiang, Kong Ling-Gao, Wang Wen-Jing, Guan Yi-Bing, Wang Yong-Song, Zheng Xiang-Zhi, Tian Zheng, Gao Jun
PDF
HTML
Get Citation
  • In order to meet the needs of ionospheric research and monitoring of space station charging, the technology of plasma in-situ imaging detection is studied. The plasma in-situ imaging detector is one of the first outside scientific payloads of the Chinese space station to detect the space environment. It is installed on the extravehicular platform of the Wentian module, and will carry out multi-element comprehensive detection of ionospheric plasma, including in-situ, imaging, and charging potential. The refined detection data of the low latitude ionosphere will provide plasma parameters for improving the orbital ionospheric model of the space station. And the long-term charging potential data are collected to support the studying of the charging effect of plasma on the space station and promoting the establishment of the space station charging evaluation system.The plasma in-situ imaging detector integrates Langmuir probe, retarding potential analyzer, ion drift meter, reference potentiometer, ion imaging technology, etc. Electron density and electron temperature are measured by Langmuir probe. Ion composition,ion density,ion temperature, and ion drift velocity are measured by retarding potential analyzer and ion drift meter. The ion imaging parameters are obtained by ion imager. The reference potential sensor is available to provide the measurements of charging potential of Wentian module. The Langmuir probe sensor inherits the design of the Langmuir probe sensor of CSES (Zhangheng-1 satellite). The retarding potential analyzer and ion drift meter also inherit the design of CSES (Zhangheng-1 satellite), and improve the design of grid voltage and collector voltage which can be adjusted adaptively according to on orbit state. The ion imager consists of an electrostatic deflection module, a Whalen analyzer and an imaging module. The ion imaging technology is for the first time applied to the field of space environment detection in China.The plasma in-situ imaging detector is tested and calibrated to verify the performance at the National Space Science Center of the Chinese Academy of Sciences. when this paper is submitted, the detector mounted on Wentian module has been successfully launched. Next, the detector will be assembled by astronauts inside the capsule using external interfaces . Then, the detector will be grabbed by the robotic arm and installed on the extravehicular experimental platform to start a long-term exploration mission.
      Corresponding author: Liu Chao, liuch@nssc.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. Y79002AH40).
    [1]

    王成, 赵海生, 刘波, 陈亮, 肖鹏, 刘露, 刘敏, 眭晓虹, 郭午龙 2022 中国空间科学技术 42 114Google Scholar

    Wang C, Zhao H S, LIU B, Chen L, Xiao P, Liu L, Liu m, Sui X H, Guo W L 2022 Chin. Space Sci. Technol. 42 114Google Scholar

    [2]

    刘琨, 袁志刚, 周晨, 赵家奇, 朱庆林, 董翔, 王海宁, 盛冬生 2021 电波科学学报 36 692Google Scholar

    Liu K, Yuan Z G, Zhou C, Zhao J Q, Zhu Q L, Dong X, Wang H N, Sheng D S 2021 Chin. J. Radio Sci. 36 692Google Scholar

    [3]

    刘传保 2013 航天电子对抗 29 47

    Liu C B 2013 Aerosp. Electron. Warfare 29 47

    [4]

    Craven P D, Kenneth H W, Joseph I M, Victoria N C, Todd A S, Jason A V, Dale C F, Linda N P 2009 47th Aerospace Sciences Meeting Orlando, USA, January 5–8, 2009 p119

    [5]

    Steve K, Terri C, William H, William S, Megan H, Gary D, Benjamin G, Jerry V 2020 J. Space Saf. Eng. 7 461Google Scholar

    [6]

    黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 229401Google Scholar

    Huang J G, Yi Z, Menf L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 229401Google Scholar

    [7]

    Mott-Smith H M,Irving Langmuir 1926 Phys. Rev. 28 727Google Scholar

    [8]

    Liu C, Guan Y B, Zheng X Z, Zhang A B, Piero D, Sun Y Q 2019 Sci. Chin. Technol. Sci. 62 829Google Scholar

    [9]

    刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强 2016 物理学报 65 189401Google Scholar

    Liu C, Guan Y B, Zhang A B, Zheng X Z, Sun Y Q 2016 Acta Phys Sin. 65 189401Google Scholar

    [10]

    郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强 2017 物理学报 66 079401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Wang W J, Tian Z, Kong L G, Sun Y Q 2017 Acta Phys Sin. 66 079401Google Scholar

    [11]

    Heelis R A, Hanson W B 1998 Geophys. Monogr. Ser. 102 61Google Scholar

    [12]

    Hanson W B, Zuccaro D R, Lippincott C R, Sanatani S 1973 Radio Sci. 8 333Google Scholar

    [13]

    郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京 2017 物理学报 66 209401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Sun Y Q, Wang W J, Tian Z, Kong L G, Ding J J 2017 Acta Phys. Sin. 66 209401Google Scholar

    [14]

    Zuccaro D R, Holt B J 1982 J. Geophys. Res. 87 8327Google Scholar

    [15]

    Knudsen D J, Burchill J K, Buchert S C, Eriksson A I, Gill R, Wahlund J E, Åhlen L, Smith M, Moffat B 2017 J. Geophys. Res. Space Phys. 122 2655Google Scholar

    [16]

    Knudsen D J, Burchill J K, Cameron T G, Enno G A, Howarth A, Yau A W 2015 Space Sci. Rev. 189 65Google Scholar

    [17]

    Knudsen D J, Burchill J K, Berg K, Cameron T, Enno G A, Marcellus C G, King E P, Wevers I, King R A 2003 Rev. Sci. Instrum. 74 202Google Scholar

  • 图 1  等离子体原位成像探测器组成

    Figure 1.  The composition of the plasma in-situ and imaging detector.

    图 2  朗缪尔探针伏安特性曲线

    Figure 2.  The I-V characteristic curve of Langmuir probe.

    图 3  空间站在–100 V充电电位下的等离子体鞘仿真

    Figure 3.  The simulation of space station plasma sheath (with –100 V).

    图 4  朗缪尔探针伸杆展开过程

    Figure 4.  The figure of Langmiur probe extension process.

    图 5  阻滞势分析仪传感器结构

    Figure 5.  Structural diagram of retarding potential analyzer sensor.

    图 6  阻滞势分析仪伏安特性曲线

    Figure 6.  The I-V characteristic curve of retarding potential analyzer.

    图 7  离子漂移计传感器收集极示意图

    Figure 7.  The figure of ion drift meter sensor collector.

    图 8  离子漂移计传感器结构

    Figure 8.  Structural diagram of ion drift meter sensor.

    图 9  参考电位计动态电位的仿真结果

    Figure 9.  Dynamic potential simulation result of reference potentiometer.

    图 10  离子成像仪传感器结构

    Figure 10.  Structural diagram of ion imager sensor.

    图 11  定标测试系统组成框图.

    Figure 11.  A simplified sketch of the calibration facility.

    图 12  离子成像仪对7种能量离子的测试图像(图中绿色星号为视场中心)

    Figure 12.  Images of 7 kinds of energy ions (the green asterisk is the center of the field view).

    图 13  成像径向位置与离子能量的拟合关系曲线

    Figure 13.  Normalized curve of imaging radial position and ion energy.

    图 14  离子成像仪在离子束能量为E = 51.84 eV时俯仰角扫描测试图像(俯仰角扫描范围–3.5°— 0.5°, 间隔0.5°)

    Figure 14.  Images of one test case (ion energy is 51.84 eV and deflection voltage is 0 V).

    图 15  离子成像仪俯仰角与偏转板因子拟合曲线

    Figure 15.  Fitting curve of elevation angle and deflection plate factor.

    表 1  任务要求的性能参数

    Table 1.  Performances of mission requirements.

    参数类型指标
    等离子体
    原位探测
    离子成分H+, He+, O+
    密度范围/cm–31×103—1×107
    密度测量相对精度优于10%
    温度范围/K500—10000
    温度测量相对精度优于10%
    电位范围/V–300— +300
    离子漂移速度/(km·s–1)–3— +3
    离子漂移速度
    测量精度/(m·s–1)
    横向: 优于20

    纵向: 优于50
    等离子体离子
    成像探测
    能量范围/eV0.1 — 204
    能量分辨率≤15%
    视场≥360°×94°
    角度分辨率≤2°×3°
    时间分辨率/ms≤45
    DownLoad: CSV

    表 2  定标测试系统性能参数

    Table 2.  Performances of the calibration system.

    离子参数性能
    能量范围/eV50 —30000
    能量散度≤2%
    通量范围/(cm–2·s–1)103—1013
    束斑直径/mm≥70
    转台定位精度/mm≤0.1
    转台角度精度≤0.1°
    磁场控制范围/nT≤500
    真空度/Pa≥5×10–5
    DownLoad: CSV
  • [1]

    王成, 赵海生, 刘波, 陈亮, 肖鹏, 刘露, 刘敏, 眭晓虹, 郭午龙 2022 中国空间科学技术 42 114Google Scholar

    Wang C, Zhao H S, LIU B, Chen L, Xiao P, Liu L, Liu m, Sui X H, Guo W L 2022 Chin. Space Sci. Technol. 42 114Google Scholar

    [2]

    刘琨, 袁志刚, 周晨, 赵家奇, 朱庆林, 董翔, 王海宁, 盛冬生 2021 电波科学学报 36 692Google Scholar

    Liu K, Yuan Z G, Zhou C, Zhao J Q, Zhu Q L, Dong X, Wang H N, Sheng D S 2021 Chin. J. Radio Sci. 36 692Google Scholar

    [3]

    刘传保 2013 航天电子对抗 29 47

    Liu C B 2013 Aerosp. Electron. Warfare 29 47

    [4]

    Craven P D, Kenneth H W, Joseph I M, Victoria N C, Todd A S, Jason A V, Dale C F, Linda N P 2009 47th Aerospace Sciences Meeting Orlando, USA, January 5–8, 2009 p119

    [5]

    Steve K, Terri C, William H, William S, Megan H, Gary D, Benjamin G, Jerry V 2020 J. Space Saf. Eng. 7 461Google Scholar

    [6]

    黄建国, 易忠, 孟立飞, 赵华, 刘业楠 2013 物理学报 62 229401Google Scholar

    Huang J G, Yi Z, Menf L F, Zhao H, Liu Y N 2013 Acta Phys. Sin. 62 229401Google Scholar

    [7]

    Mott-Smith H M,Irving Langmuir 1926 Phys. Rev. 28 727Google Scholar

    [8]

    Liu C, Guan Y B, Zheng X Z, Zhang A B, Piero D, Sun Y Q 2019 Sci. Chin. Technol. Sci. 62 829Google Scholar

    [9]

    刘超, 关燚炳, 张爱兵, 郑香脂, 孙越强 2016 物理学报 65 189401Google Scholar

    Liu C, Guan Y B, Zhang A B, Zheng X Z, Sun Y Q 2016 Acta Phys Sin. 65 189401Google Scholar

    [10]

    郑香脂, 张爱兵, 关燚炳, 刘超, 王文静, 田峥, 孔令高, 孙越强 2017 物理学报 66 079401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Wang W J, Tian Z, Kong L G, Sun Y Q 2017 Acta Phys Sin. 66 079401Google Scholar

    [11]

    Heelis R A, Hanson W B 1998 Geophys. Monogr. Ser. 102 61Google Scholar

    [12]

    Hanson W B, Zuccaro D R, Lippincott C R, Sanatani S 1973 Radio Sci. 8 333Google Scholar

    [13]

    郑香脂, 张爱兵, 关燚炳, 刘超, 孙越强, 王文静, 田峥, 孔令高, 丁建京 2017 物理学报 66 209401Google Scholar

    Zheng X Z, Zhang A B, Guan Y B, Liu C, Sun Y Q, Wang W J, Tian Z, Kong L G, Ding J J 2017 Acta Phys. Sin. 66 209401Google Scholar

    [14]

    Zuccaro D R, Holt B J 1982 J. Geophys. Res. 87 8327Google Scholar

    [15]

    Knudsen D J, Burchill J K, Buchert S C, Eriksson A I, Gill R, Wahlund J E, Åhlen L, Smith M, Moffat B 2017 J. Geophys. Res. Space Phys. 122 2655Google Scholar

    [16]

    Knudsen D J, Burchill J K, Cameron T G, Enno G A, Howarth A, Yau A W 2015 Space Sci. Rev. 189 65Google Scholar

    [17]

    Knudsen D J, Burchill J K, Berg K, Cameron T, Enno G A, Marcellus C G, King E P, Wevers I, King R A 2003 Rev. Sci. Instrum. 74 202Google Scholar

  • [1] Liu Yun, Wang Wen-Hai, He De-Jing, Zhou Yong-Zhuang, Shen Yong, Zou Hong-Xin. Laser system of cold atom optical clock in China Space Station. Acta Physica Sinica, 2023, 72(18): 184202. doi: 10.7498/aps.72.20230412
    [2] Li Jie, Zheng Le, Dong Pan, Long Ji-Dong, Wang Tao, Liu Fei-Xiang. Spatial distribution characteristics of vacuum arc plasma with occluded deuterium electrode. Acta Physica Sinica, 2022, 71(4): 042901. doi: 10.7498/aps.71.20211835
    [3] Study on spatial distribution characteristics of vacuum arc plasma with occluded deuterium electrode. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211835
    [4] Li Xin-Xia, Li Guo-Zhuang, Liu Hong-Bo. Helicon wave damping coefficient of Chinese fusion engineering testing reactor plasma. Acta Physica Sinica, 2020, 69(14): 145201. doi: 10.7498/aps.69.20200222
    [5] Liu Chao, Guan Yi-Bing, Zhang Ai-Bing, Zheng Xiang-Zhi, Sun Yue-Qiang. The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Physica Sinica, 2016, 65(18): 189401. doi: 10.7498/aps.65.189401
    [6] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi, Zhang Zhen-Long. Simulation of small space debris impact inducing discharge using laser-induced plasma method. Acta Physica Sinica, 2014, 63(11): 119601. doi: 10.7498/aps.63.119601
    [7] Cai Ming-Hui, Wu Feng-Shi, Li Hong-Wei, Han Jian-Wei. Study on plasma characteristics from hypervelocity impacts by small space debris. Acta Physica Sinica, 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [8] Gao Xun, Du Chuang, Li Cheng, Liu Lu, Song Chao, Hao Zuo-Qiang, Lin Jing-Quan. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy. Acta Physica Sinica, 2014, 63(9): 095203. doi: 10.7498/aps.63.095203
    [9] Huang Jian-Guo, Yi Zhong, Meng Li-Fei, Zhao Hua, Liu Ye-Nan. Mechanism of rapid-charging events for international space station. Acta Physica Sinica, 2013, 62(9): 099401. doi: 10.7498/aps.62.099401
    [10] Chen Li-Juan, Lu Shi-Ping, Mo Jia-Qi. The periodic orbits of sport model of plasmas particle in the process of magnetosphere-ionosphere coupling. Acta Physica Sinica, 2013, 62(9): 090201. doi: 10.7498/aps.62.090201
    [11] Guo Kai-Min, Gao Xun, Xue Nian-Liang, Zhao Zhen-Ming, Li Hai-Jun, Lu Yi, Lin Jing-Quan. Spatially-resolved measurement of conductivity of plasma single filament generated by femtosecond laser. Acta Physica Sinica, 2011, 60(10): 105203. doi: 10.7498/aps.60.105203
    [12] Long Yong-Bing, Zhang Jian, Wang Guo-Ping. Femtosecond pump-probe technique assisted by surface plasmon resonance. Acta Physica Sinica, 2009, 58(11): 7722-7726. doi: 10.7498/aps.58.7722
    [13] Zhang Min, Wu Zhen-Sen. The moments analysis of the pulse propagation through plasma medium and its applications. Acta Physica Sinica, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [14] Hao Zuo-Qiang, Zhang Jie, Yu Jin, Zhang Zhe, Zhong Jia-Yong, Zang Chong-Zhi, Jin Zhan, Wang Zhao-Hua, Wei Zhi-Yi. Fluorescence measurement and acoustic diagnostics of plasma channels in air. Acta Physica Sinica, 2006, 55(1): 299-303. doi: 10.7498/aps.55.299
    [15] Song Fa-Lun, Cao Jin-Xiang, Wang Ge. A model of the absorption of electromagnetic waves by weakly ionized plasma and the numerical calculation. Acta Physica Sinica, 2005, 54(2): 807-811. doi: 10.7498/aps.54.807
    [16] Gu Zhen-Yu, Ji Pei-Yong. . Acta Physica Sinica, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [17] HUANG CHAO-SONG, LI JUN, M. C. KELLEY. COUPLING BETWEEN ATMOSPHERIC GRAVITY WAVES AND PLASMA INTERCHANGE INSTABILITY IN THE IONOSPHERE. Acta Physica Sinica, 1994, 43(2): 239-247. doi: 10.7498/aps.43.239
    [18] WANG LONG, LUO YAO-QUAN, LI ZAN-LIANG, WANG WEN-SHU, YANG SI-ZE, LI WEN-LAI, QI XIA-ZHI, ZHAO HUA. MICROWAVE PREIONIZATION PLASMA IN A TOKAMAK. Acta Physica Sinica, 1989, 38(5): 714-721. doi: 10.7498/aps.38.714
    [19] FENG XIAN-PING, XU ZHI-ZHAN, JIANG ZHI-MING, ZHANG ZHENG-QUAN, CHEN SHI-SHENG, FAN PIN-ZHONG, TIAN LI, ZHOU ZI-JIN. SPACE DISTRIBUTION OF HIGH IONIZING IONS IN PLASMA. Acta Physica Sinica, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [20] 研究中国天空电离层之初草报告. Acta Physica Sinica, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
Metrics
  • Abstract views:  4335
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  07 September 2022
  • Accepted Date:  02 November 2022
  • Available Online:  09 December 2022
  • Published Online:  20 February 2023

/

返回文章
返回