Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling of wave-wave and wave-particle interactions in an ionospheric plasma with an externally applied pump wave

ZHANG Meng-Long FANG Chuan ZHANG Zi-Ming LI He-Ping

Citation:

Modeling of wave-wave and wave-particle interactions in an ionospheric plasma with an externally applied pump wave

ZHANG Meng-Long, FANG Chuan, ZHANG Zi-Ming, LI He-Ping
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In low-pressure plasmas, the collisions between particles are weak and insufficient damping from collisions leads to the gradual emergence of various waves and instabilities. Thus, the effects of wave-particle interaction become non-negligible in the non-equilibrium transport processes in plasmas under low pressure conditions. For instance, the heating of ionospheric plasma by high-frequency electromagnetic waves plays a significant role in enabling over-the-horizon communication. During the wave propagation through the ionosphere, the electromagnetic radiation alters the local electron temperature and density, and simultaneously, excites various wave modes and instabilities. This study focuses on the interactions between high-power electromagnetic waves emitted from the ground and ionospheric plasmas. Based on the plasma fluid model and Zakharov method, a physical-mathematical model is established to describe the wave-wave and wave-particle interactions in the ionospheric plasmas under the excitation of the pump waves. The modeling results on the active heating of ionosphere show that, when the ground-emitted waves propagate in the ionospheric plasmas, the energy deposition of the electromagnetic waves at the reflection height will excite a strong localized electric field, and consequently, trigger the parametric instabilities. When the frequency and wave vector matching conditions are satisfied, two distinct three-wave interactions will be excited, i.e., the parametric decay instability involving the pump wave, Langmuir wave and ion acoustic wave, and the parametric instability process related to the pump wave, upper hybrid and lower hybrid waves. Within certain ranges of pump frequency and power studied in this paper, the decrease of the pump frequency will lead to the decrease of the reflection height of the ordinary waves, and simultaneously, the increase of the perturbation ratios of the electron temperature; while the higher pump wave power will enhance the energy absorption of the ionospheric plasmas from the pump wave, and thereby elevating the electron temperature. The modeling results not only reveal the spatiotemporal evolutions of the ionospheric plasma characteristics under various pump parameters and the energy transport processes between waves and particles, but also provide theoretical explanations on the parametric instability, stimulated electromagnetic emission and other phenomena observed in experiments.
  • [1]

    Stubbe P, Hagfor T 1997 Surv. Geophys. 18 57

    [2]

    Zhan L 2007 M.S. Thesis (Beijing: Graduate School of Chinese Academy of Science) (in Chinese) [占亮 2007 硕士学位论文 (北京: 中国科学院研究生院)]

    [3]

    Huang W G, Gu S F, Gong J C 2004 Chin. J. Radio 19 296 (in Chinese) [黄文耿, 古士芬, 龚建村 2004 电波科学学报 19 296]

    [4]

    Chang S S, Ni B B, Zhao Z Y, Gu X D, Zhou C 2014 Chin. Phys. B 23 089401

    [5]

    Gondarenko N A, Ossakow S L, Milikh G M 2005 J. Geophys. Res-Space Phys. 110 A09304

    [6]

    Li H P, Ostrikov K K, Sun W T 2018 Phys. Rep. 770-772 1

    [7]

    Streltsov A V, Berthelier J J, Chernyshov A A, Frolov V L, Honary F, Kosch M J, McCoy R P, Mishin E V, Rietveld M T 2018 Space Sci. Rev. 214 1

    [8]

    Huang W G 2003 Ph.D. Dissertation (Beijing: Graduate School of Chinese Academy of Science) (in Chinese) [黄文耿 2003 博士学位论文 (北京: 中国科学院研究生院)]

    [9]

    Li J T 2012 Ph.D. Dissertation (Xi’an: Xidian University) (in Chinese) [李江挺 2012 博士学位论文 (西安: 西安电子科技大学)]

    [10]

    Gurevich A V, Lukyanov A V, Zybin K P 1996 Phys. Lett. A 211 363

    [11]

    Gurevich A V, Milikh G M 1997 J. Geophys. Res-Space Phys. 102 389

    [12]

    Stubbe P 1996 J. Geophys. Res-Space Phys. 58 349

    [13]

    Bernhardt P A, Wong M, Huba J D, Fejer B G, Wagner L S, Goldstein J A, Selcher C A, Frolov V L, Sergeev E N 2000 J. Geophys. Res-Space Phys. 105 10657

    [14]

    Wang X G 2014 Fundamentals of Plasma Physics (Beijing: Peking University Press) pp3-15 (in Chinese) [王晓钢 2014 等离子体物理基础 (北京: 北京大学出版社) 第3-15页]

    [15]

    Ma T C, Hu X W, Chen Y H 2012 Principles of Plasma Physics (Revised Edition) (Hefei: University of Science and Technology of China Press) pp16-34 (in Chinese) [马腾才, 胡希伟, 陈银华 2012 等离子体物理原理(修订版) (合肥: 中国科学技术大学出版社) 第16-34页]

    [16]

    Wang S C, Fang H X, Yang S G, Weng L B 2012 Chin. J. Space Sci. 32 818 (in Chinese) [汪四成, 方涵先, 杨升高, 翁利斌 2012 空间科学学报 32 818]

    [17]

    Wong A Y 1977 Laser Interact. Relat. Plasma Phenom. 4B 783

    [18]

    Zakharov V E 1972 Sov. Phys. JETP 35 908

    [19]

    DuBois D F, Rose H A, Russell D 1990 J. Geophys. Res-Space Phys. 95 21221

    [20]

    Eliasson B, Senior A, Rietveld M, Phelps A D R, Cairns R A, Ronald K, Speirs D C, Trines R M, McCrea I, Bamford R, Mendonca J T, Bingham R 2021 Nat. Commun. 12 6209

    [21]

    Yang L X, Liu C, Li Q L, Yan Y B 2022 Acta Phys. Sin. 71 064101 (in Chinese) [杨利霞, 刘超, 李清亮, 闫玉波 2022 物理学报 71 064101]

    [22]

    Bernhardt P A, Duncan L M 1982 J. Atmos. Terr. Phys. 44 1061

    [23]

    Gurevich A, Hagfors T, Carlson H, Karashtin A, Zybin K 1998 Phys. Lett. A 239 385

    [24]

    Wang C, Zhou Cm Zhao Z Y, Zhang Y N, Yang X B 2015 Chin. J. Geophys. 58 1853 (in Chinese) [王琛, 周晨, 赵正予, 张援农, 杨许铂 2015 地球物理学报 58 1853]

    [25]

    Gurevich A V (translated by Liu X M, Zhang X J) 1986 Nonlinear Phenomena in the Ionosphere (Beijing: Science Press) pp245-249 (in Chinese) [古列维奇A V著 (刘选谋, 张训械译) 1986 电离层中的非线性现象 (北京: 科学出版社) 第245-249页]

    [26]

    Dysthe K B, Mjølhus E, Pécseli H L, Rypdal K 1983 Phys. Fluids 26 146

    [27]

    Banks P M, Kockarts G 1973 Aeronomy (New York: Academic Press)

    [28]

    Wang C 2016 Ph.D. Dissertation (Wuhan: Wuhan University) (in Chinese) [王琛 2016 博士学位论文 (武汉: 武汉大学)]

    [29]

    Huang W G, Gu S F 2003 Chin. J. Space Sci. 23 181 (in Chinese) [黄文耿, 古士芬 2003 空间科学学报 23 181]

    [30]

    Stubbe P, Varnum W S 1972 Planet Space Sci. 20 1121

    [31]

    Huang W G, Gu S F 2003 Chin. J. Space Sci. 23 343 (in Chinese) [黄文耿, 古士芬 2003 空间科学学报 23 343]

    [32]

    Mahmoudian A, Nossa E, Isham B, Bernhardt P A, Briczinski S J, Sulzer M 2019 J. Geophys. Res-Space Phys. 124 3699

    [33]

    Frolov V L, Sergeev E N, Ermakova E N, Komrakov G P 2001 Geophys. Res. Lett. 28 3103

    [34]

    Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X 2017 Space weather 15 418

    [35]

    Hedin A E 1991 J. Geophys. Res-Space Phys. 96 1159

    [36]

    Alken P, Thébault E, Beggan C D, Amit H, Aubert J, Baerenzung J, Bondar T N, Brown W J, Califf S, Chambodut A, Chulliat A, Cox G A, Finlay C C, Fournier A, Gillet N, Grayver A, Hammer M D, Holschneider M, Huder L, Hulot G, Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger J M, Lesur V, Livermore P W, Lowes F J, Macmillan S, Magnes W, Mandea M, Marsal S, Matzka J, Metman M C, Minami T, Morschhauser A, Mound J E, Nair M, Nakano S, Olsen N, Pavón-Carrasco F J, Petrov V G, Ropp G, Rother M, Sabaka T J, Sanchez S, Saturnino D, Schnepf N R, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta J M, Varner J, Vervelidou F, Vigneron P, Wardinski I, Wicht J, Woods A, Yang Y, Zeren Z, Zhou B 2021 Earth, Planets Space 73 1

    [37]

    Mur G 1981 IEEE Transactions on Electromagnetic Compatibility 23 377

    [38]

    Eliasson B, Thidé B 2007 Geophys. Res. Lett. 34 L06106

    [39]

    Wang X G 2014 Fundamentals of Plasma Physics (Beijing: Peking University Press) pp79-81 (in Chinese) [王晓钢 2014 等离子体物理基础 (北京: 北京大学出版社) 第79-81页]

    [40]

    Zhou C, Wang X, Liu M R, Ni B B, Zhao Z Y 2018 Chin. J. Geophys. 61 4323 (in Chinese) [周晨, 王翔, 刘默然, 倪彬彬, 赵正予 2018 地球物理学报 61 4323]

  • [1] LUO Shichao, WU Liyin, HU Shouchao, GONG Hongming, LYU Minglei, KONG Xiaoping. Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field. Acta Physica Sinica, doi: 10.7498/aps.74.20241307
    [2] Yang Dong-Chao, Yi Li-Zhi, Ding Lin-Jie, Liu Min, Zhu Li-Ya, Xu Yun-Li, He Xiong, Shen Shun-Qing, Pan Li-Qing, John Q. Xiao. Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators. Acta Physica Sinica, doi: 10.7498/aps.73.20240498
    [3] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.70.20201610
    [4] Wang Cun-Hai, Zheng Shu, Zhang Xin-Xin. Discontinuous finite element solutions for coupled radiation-conduction heat transfer in irregular media. Acta Physica Sinica, doi: 10.7498/aps.69.20191185
    [5] Wang Ru-Jia, Wu Shi-Ping, Chen Wei. Propagation of thermoviscoelastic wave in inhomogeneous alloy melt with varying temperature. Acta Physica Sinica, doi: 10.7498/aps.68.20181923
    [6] Chai Zhen-Xia, Liu Wei, Yang Xiao-Liang, Zhou Yun-Long. Application of variable-time-period harmonic balance method to periodic unsteady vortex shedding. Acta Physica Sinica, doi: 10.7498/aps.68.20190126
    [7] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.68.20190865
    [8] Liu Yang, Han Yan-Long, Jia Fu-Guo, Yao Li-Na, Wang Hui, Shi Yu-Fei. Numerical simulation on stirring motion and mixing characteristics of ellipsoid particles. Acta Physica Sinica, doi: 10.7498/aps.64.114501
    [9] Jia Yu-Kun, Yang Shi-E, Guo Qiao-Neng, Chen Yong-Sheng, Gao Xiao-Yong, Gu Jin-Hua, Lu Jing-Xiao. Optimal design of light trapping structure for broadband absorption enhancement in amorphous silicon solar cell. Acta Physica Sinica, doi: 10.7498/aps.62.247801
    [10] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, doi: 10.7498/aps.62.204702
    [11] Geng Shao-Fei, Tang De-Li, Qiu Xiao-Ming, Nie Jun-Wei, Yu Yi-Jun. The influence of Hall drift to the ionization efficiency of anode layer Hall plasma accelerator. Acta Physica Sinica, doi: 10.7498/aps.61.075210
    [12] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin, Liu Jian-Xun. Numerical simulation of temporal and spatial distribution of X-ray ionization with high-altitude nuclear explosion. Acta Physica Sinica, doi: 10.7498/aps.61.242801
    [13] Ouyang Jian-Ming, Ma Yan-Yun, Shao Fu-Qiu, Zou De-Bin. Numerical simulation of X-ray ionization and atmospheric temporal evolutions with high-altitude nuclear explosions. Acta Physica Sinica, doi: 10.7498/aps.61.083201
    [14] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, doi: 10.7498/aps.59.2582
    [15] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of the breakdown on HPM dielectric surface. Acta Physica Sinica, doi: 10.7498/aps.58.3268
    [16] Qian Xian-Mei, Zhu Wen-Yue, Rao Rui-Zhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path. Acta Physica Sinica, doi: 10.7498/aps.58.6633
    [17] Deng Feng, Zhao Zheng-Yu, Shi Run, Zhang Yuan-Nong. Two-dimensional simulation of high-frequency-induced large-scale irregularities in F region. Acta Physica Sinica, doi: 10.7498/aps.58.7382
    [18] Pang Xue-Xia, Deng Ze-Chao, Dong Li-Fang. Numerical simulation of particle species behavior in atmosphere plasmas with different ionization degree. Acta Physica Sinica, doi: 10.7498/aps.57.5081
    [19] Duan Yao-Yong, Guo Yong-Hui, Wang Wen-Sheng, Qiu Ai-Ci. Numerical investigations of Z-pinch plasma instabilities. Acta Physica Sinica, doi: 10.7498/aps.53.3429
    [20] ZHANG JIA-TAI, NIE XIAO-BO, SU XIU-MIN. NUMERICAL SIMULATION STUDIES ON FILAMENTATION IN COHERENCE AND INCOHERENCE LASER. Acta Physica Sinica, doi: 10.7498/aps.43.52
Metrics
  • Abstract views:  16
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  09 September 2025
  • /

    返回文章
    返回