Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma

Niu Yue Bao Wei-Min Li Xiao-Ping Liu Yan-Ming Liu Dong-Lin

Citation:

Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma

Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin
PDF
HTML
Get Citation
  • Inductively coupled plasma generator is one of the core components of the near-space high-speed target plasma electromagnetic scientific experimental research device, which is often used to simulate high enthalpy and high speed plasma sheath environment. In order to study the discharge characteristics of inductively coupled plasma generator under high power, radio frequency and medium pressure, the numerical simulation and experiment are combined to study its internal heat transfer and flow characteristics in this paper. Based on the local thermodynamic equilibrium conditions, the numerical simulation of large-scale radio frequency and medium pressure inductively coupled plasma with a power of 100–400 kW is carried out through the multi-field coupling of flow, electromagnetic and temperature field, and verified by light intensity and spectrum experiment. The results show that the electromagnetic field distribution in the high-power thermal balance inductively coupled plasma generator is similar to that of the small- and medium-sized power plasma generator. The discharge energy dissipation occurs mainly in the area where the induction coil is located. The temperature of the inner wall of the quartz tube is higher at the coil location than in other areas, and the plasma has a ring-shaped high-temperature structure. The outer wall of the quartz tube is set to be the boundary condition of heat flux for simulating the temperature change of the quartz tube under cold blowing. This setting is in coincidence with factual situations. The wall temperature of the quartz tube at the entrance and at the induction coil section are found to be relatively high. When the large-size inductively coupled plasma generator works, an obvious return vortex is generated at the entrance due to the temperature difference and the electromagnetic pumping effect, and the exit velocity increases slightly with the increase of power. At the same time, the discharge experiment under the corresponding conditions shows that there is found a ring structure with bright edges and dark centers in the axial image of the argon discharge. Moreover, the emission spectrum of argon plasma is measured through the spectrum diagnosis system and the spatial distribution of the generator electron temperature is obtained. The light intensity of the discharge image and the electron temperature measured by the spectrum are found to be in comparative coincidence with the COMSOL simulation temperature result, demonstrating the validity of the numerical simulation results under thermodynamic equilibrium conditions. The numerical simulation results in this paper are also applicable to the optimization design and temperature resistance evaluation of the inductively coupled plasma generator.
      Corresponding author: Liu Dong-Lin, donglinliu@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61627901)
    [1]

    龚旻, 谭杰, 李大伟, 马召, 田冠锁, 王暕来, 孟令涛 2018 宇航学报 39 1059Google Scholar

    Gong M, Tan J, Li D W, Ma Z, Tian G S, Wang J L, Meng L T 2018 J. Astronautics 39 1059Google Scholar

    [2]

    魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 物理学报 64 175201Google Scholar

    Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin. 64 175201Google Scholar

    [3]

    喻明浩 2019 物理学报 68 185202Google Scholar

    Yu M H 2019 Acta Phys. Sin. 68 185202Google Scholar

    [4]

    Mckelliget J W, El-Kaddah N 1987 MRS Proc. 98 21Google Scholar

    [5]

    Bernardi D, Colombo V, Ghedini E 2003 Eur. Phys. J. D 27 55Google Scholar

    [6]

    Ye R, Murphy A B, Ishigaki T 2007 Plasma Chem. Plasma Process. 27 189Google Scholar

    [7]

    Watanabe T, Sugimoto N 2004 Thin Solid Films 457 201Google Scholar

    [8]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [9]

    Lei F, Li X P, Liu Y M 2018 AIP Adv. 8 015003Google Scholar

    [10]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. 12 478Google Scholar

    [11]

    马利斌 2019 硕士学位论文 (西安: 西安理工大学)

    Ma L B 2019 M. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)

    [12]

    陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第29页

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing: Science Press) p29 (in Chinese)

    [13]

    王峰, 何立明, 兰宇丹, 杜宏亮, 俞健 2011 原子能科学技术 45 642

    Wang F, He L M, Lan Y D, Du H L, Yu J 2011 Atmo. Energ. Sci. Technol. 45 642

    [14]

    辛仁轩 2018 等离子体发射光谱分析 (北京: 化学工业出版社) 第46, 47页

    Xin R X 2005 Analysis of Plasma Emission Spectroscopy pp46, 47 (Beijing: Chemical Industry Press) (in Chinese)

    [15]

    刘丽萍, 王一光, 王国林, 罗杰, 马昊军 2018 航空学报 39 141Google Scholar

    Liu L P, Wang Y G, Wang G L, Luo J, Ma H J 2018 Acta Aeronautica et Astronautica Sinica 39 141Google Scholar

    [16]

    高鑫鑫, 华伟, 张弘, 常颖 2019 四川大学学报 (自然科学版) 56 703Google Scholar

    Gao X X, Hua W, Zhang H, Chang Y 2019 J. Sichuan Univ.: Nat. Sci. Ed. 56 703Google Scholar

    [17]

    朱海龙, 童洪辉, 叶高英, 陈伦江 2012 核聚变与等离子体物理 32 199Google Scholar

    Zhu H L, Tong H H, Ye G Y, Chen L J 2012 Nucl. Fus. Plas. Phys. 32 199Google Scholar

    [18]

    金星, 段发鑫, 张晶晶, 张哲, 廖杨凡 2018 质谱学报 39 192Google Scholar

    Jin X, Duan F X, Zhang J J, Zhang Z, Liao Y F 2018 J. Chin. Mass Spectr. Soc. 39 192Google Scholar

    [19]

    贾瑞宝, 罗天勇, 陈伦江 2018 核聚变与等离子体物理 38 473Google Scholar

    Jia R B, Luo T Y, Chen L J 2018 Nucl. Fus. Plas. phys. 38 473Google Scholar

    [20]

    Ikhlef N, Leroy O, Mekideche M R 2015 Contrib. Plasma Phys. 54 735Google Scholar

    [21]

    李伟斌, 熊永红 2003 物理实验 23 9

    Li W B, Xiong Y H 2003 Physics Experimentation 23 9

  • 图 1  感应耦合等离子体发生器二维模型图

    Figure 1.  Two-dimensional model diagram of inductively coupled plasma torch

    图 2  (a) 发生器; (b) 进气口; (c) 线圈区域网格划分图

    Figure 2.  Grid diagram of (a) plasma torch, (b) inlet, (c) coil

    图 3  400 kW等离子体内的(a)磁场和(b)电场分布

    Figure 3.  (a) Magnetic field and (b) electric field distribution in the 400 kW plasma torch

    图 9  不同功率下石英管内壁面的温度分布

    Figure 9.  Temperature distribution of quartz tube wall with different power

    图 4  功率与磁场强度和电场强度最大值关系图

    Figure 4.  Relationship between power and the maximum intensity of magnetic field and electric field

    图 5  (a) 100 kW, (b) 200 kW, (c) 300 kW, (d) 400 kW等离子体内的温度分布

    Figure 5.  (a) 100 kW, (b) 200 kW, (c) 300 kW, (d) 400 kW plasma torch temperature distribution

    图 6  400 kW等离子体内的焦耳热分布

    Figure 6.  Joule heat distribution in 400 kW plasma torch

    图 7  400 kW等离子体速度分布

    Figure 7.  400 kW plasma velocity distribution

    图 8  不同功率下中心轴线速度分布

    Figure 8.  Center axis velocity distribution with different power

    图 10  放电图像采集实验装置示意图

    Figure 10.  Schematic diagram of the experimental device

    图 11  氩气ICP放电图像

    Figure 11.  Argon gas ICP discharge image

    图 12  归一化后仿真温度与放电图像的光强曲线对比

    Figure 12.  Normalization of simulated temperature and light intensity curve of discharge image

    图 13  光谱实验装置图

    Figure 13.  Diagram of spectroscopy experimental device

    图 14  径向辐射强度分布

    Figure 14.  Radial radiation intensity distribution

    图 15  等离子体径向激发温度 (a) r = 30 mm, ${T_{\rm e}} = 1.103 \times{10^4}$ K; (b) r = 60 mm; ${T_{\rm e}} = 1.199 \times {10^4}$ K; (c) r = 70 mm, ${T_{\rm e}} = 1.136 \times {10^4}$ K

    Figure 15.  Radial plasma excitation temperature: (a) r = 30 mm, ${T_{\rm e}} = 1.103 \times {10^4}$ K; (b) r = 60 mm, ${T_{\rm e}} = 1.199 \times {10^4}$ K; (c) r = 70 mm ${T_{\rm e}} = 1.136 \times {10^4}$ K

    图 16  仿真温度与实验温度对比图

    Figure 16.  Comparison of simulated temperature and experimental temperature

    表 1  基本计算参数

    Table 1.  Basic calculation parameters.

    序号模拟参数数值
    1入口质量流/(g·s-1)10
    2气压/Pa1000
    3线圈功率/kW100—400
    4频率/kHz440
    5湍流强度0.05
    6湍流长度/m0.01
    DownLoad: CSV

    表 2  原子Ar I谱线的光谱学数据

    Table 2.  Spectroscopic data of atomic Ar I spectral line.

    λ/nmAki/s–1Ek/eVgk
    912.31.89 × 10712.913
    801.59.30 × 10613.105
    842.52.15 × 10713.125
    922.55.00 × 10613.205
    826.51.53 × 10713.363
    DownLoad: CSV

    表 A1  氩等离子体的热力学与输运性质(0.01 atm, 热力学平衡)

    Table A1.  Thermodynamics and transport properties of argon plasma (0.01 atm, Thermodynamic equilibrium).

    温度/K密度/(kg·m–3)定压比热/(J·kg–1·K–1)黏度/(Pa·s)热导率/(W·m–1·K–1)电导率/(S·m–1)
    1000$4.87\times10^{-3}$$5.21\times10^{2}$$ 6.94\times10^{-5}$$5.42\times10^{-2}$$0\times 10^{0}$
    2000$2.43\times10^{-3}$$5.21\times10^{2}$$ 1.03\times10^{-4}$$8.04\times10^{-2}$$1.09\times 10^{-10}$
    3000$1.62\times10^{-3}$$5.21\times10^{2}$$ 1.32\times10^{-4}$$1.03\times10^{-1}$$6.06\times 10^{-4} $
    4000$1.22\times10^{-3}$$5.21\times10^{2}$$ 1.58\times10^{-4}$$1.24\times10^{-1}$$8.44\times 10^{-1} $
    5000$9.73\times10^{-4}$$5.22\times10^{2}$$ 1.84\times10^{-4}$$1.45\times10^{-1}$$4.31\times 10^{1} $
    6000$8.10\times10^{-4}$$5.49\times10^{2}$$ 2.08\times10^{-4}$$1.80\times10^{-1}$$3.05\times 10^{2} $
    7000$6.93\times10^{-4}$$7.48\times10^{2}$$ 2.31\times10^{-4}$$2.61\times10^{-1}$$9.17\times 10^{2} $
    8000$5.98\times10^{-4}$$1.60\times10^{3}$$ 2.46\times10^{-4}$$4.54\times10^{-1}$$1.60\times 10^{3} $
    9000$5.07\times10^{-4}$$4.14\times10^{3}$$ 2.26\times10^{-4}$$8.48\times10^{-1}$$2.26\times 10^{3} $
    10000$4.04\times10^{-4}$$9.28\times10^{3}$$ 1.51\times10^{-4}$$1.50\times10^{0}$$2.88\times 10^{3} $
    11000$3.00\times10^{-4}$$1.48\times10^{4}$$ 6.99\times10^{-5}$$1.98\times10^{0}$$3.46\times 10^{3} $
    12000$2.29\times10^{-4}$$1.13\times10^{4}$$ 2.65\times10^{-5}$$1.56\times10^{0}$$3.95\times 10^{3} $
    13000$1.95\times10^{-4}$$4.96\times10^{3}$$ 1.19\times10^{-5}$$1.06\times10^{0}$$4.37\times 10^{3} $
    14000$1.76\times10^{-4}$$2.41\times10^{3}$$ 8.18\times10^{-5}$$9.32\times10^{-1}$$4.76\times 10^{3} $
    15000$1.63\times10^{-4}$$1.94\times10^{3}$$ 7.59\times10^{-5}$$9.86\times10^{-1}$$5.15\times 10^{3} $
    DownLoad: CSV
  • [1]

    龚旻, 谭杰, 李大伟, 马召, 田冠锁, 王暕来, 孟令涛 2018 宇航学报 39 1059Google Scholar

    Gong M, Tan J, Li D W, Ma Z, Tian G S, Wang J L, Meng L T 2018 J. Astronautics 39 1059Google Scholar

    [2]

    魏小龙, 徐浩军, 李建海, 林敏, 宋慧敏 2015 物理学报 64 175201Google Scholar

    Wei X L, Xu H J, Li J H, Lin M, Song H M 2015 Acta Phys. Sin. 64 175201Google Scholar

    [3]

    喻明浩 2019 物理学报 68 185202Google Scholar

    Yu M H 2019 Acta Phys. Sin. 68 185202Google Scholar

    [4]

    Mckelliget J W, El-Kaddah N 1987 MRS Proc. 98 21Google Scholar

    [5]

    Bernardi D, Colombo V, Ghedini E 2003 Eur. Phys. J. D 27 55Google Scholar

    [6]

    Ye R, Murphy A B, Ishigaki T 2007 Plasma Chem. Plasma Process. 27 189Google Scholar

    [7]

    Watanabe T, Sugimoto N 2004 Thin Solid Films 457 201Google Scholar

    [8]

    Punjabi S B, Joshi N K, Mangalvedekar H A, Lande B K, Das A K, Kothari D C 2012 Phys. Plasmas 19 012108Google Scholar

    [9]

    Lei F, Li X P, Liu Y M 2018 AIP Adv. 8 015003Google Scholar

    [10]

    Stewart R A, Vitello P, Graves D B 1994 J. Vac. Sci. Technol. 12 478Google Scholar

    [11]

    马利斌 2019 硕士学位论文 (西安: 西安理工大学)

    Ma L B 2019 M. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)

    [12]

    陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第29页

    Chen X 2009 Thermal Plasma Heat Transfer and Flow (Beijing: Science Press) p29 (in Chinese)

    [13]

    王峰, 何立明, 兰宇丹, 杜宏亮, 俞健 2011 原子能科学技术 45 642

    Wang F, He L M, Lan Y D, Du H L, Yu J 2011 Atmo. Energ. Sci. Technol. 45 642

    [14]

    辛仁轩 2018 等离子体发射光谱分析 (北京: 化学工业出版社) 第46, 47页

    Xin R X 2005 Analysis of Plasma Emission Spectroscopy pp46, 47 (Beijing: Chemical Industry Press) (in Chinese)

    [15]

    刘丽萍, 王一光, 王国林, 罗杰, 马昊军 2018 航空学报 39 141Google Scholar

    Liu L P, Wang Y G, Wang G L, Luo J, Ma H J 2018 Acta Aeronautica et Astronautica Sinica 39 141Google Scholar

    [16]

    高鑫鑫, 华伟, 张弘, 常颖 2019 四川大学学报 (自然科学版) 56 703Google Scholar

    Gao X X, Hua W, Zhang H, Chang Y 2019 J. Sichuan Univ.: Nat. Sci. Ed. 56 703Google Scholar

    [17]

    朱海龙, 童洪辉, 叶高英, 陈伦江 2012 核聚变与等离子体物理 32 199Google Scholar

    Zhu H L, Tong H H, Ye G Y, Chen L J 2012 Nucl. Fus. Plas. Phys. 32 199Google Scholar

    [18]

    金星, 段发鑫, 张晶晶, 张哲, 廖杨凡 2018 质谱学报 39 192Google Scholar

    Jin X, Duan F X, Zhang J J, Zhang Z, Liao Y F 2018 J. Chin. Mass Spectr. Soc. 39 192Google Scholar

    [19]

    贾瑞宝, 罗天勇, 陈伦江 2018 核聚变与等离子体物理 38 473Google Scholar

    Jia R B, Luo T Y, Chen L J 2018 Nucl. Fus. Plas. phys. 38 473Google Scholar

    [20]

    Ikhlef N, Leroy O, Mekideche M R 2015 Contrib. Plasma Phys. 54 735Google Scholar

    [21]

    李伟斌, 熊永红 2003 物理实验 23 9

    Li W B, Xiong Y H 2003 Physics Experimentation 23 9

  • [1] Zhang Ya-Rong, Han Qian-Han, Guo Ying, Zhang Jing, Shi Jian-Jun. Discharge characteristics and mechanism of plasma plume generated by atmospheric pulsed discharge. Acta Physica Sinica, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [2] Wang Xin-Bo, Bai He, Sun Qin-Fen, Yin Xin-She, Zhang Hong-Tai, Cui Wan-Zhao. Experimental study of multipactor on dielectric of penetration flange for vacuum chamber. Acta Physica Sinica, 2021, 70(12): 127901. doi: 10.7498/aps.70.20210106
    [3] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [4] Guo Heng, Zhang Xiao-Ning, Nie Qiu-Yue, Li He-Ping, Zeng Shi, Li Zhi-Hui. Numerical modelling for characteristics of the meso-pressure six-phase alternative current arc discharge plasma jet. Acta Physica Sinica, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] Cheng Yu-Guo, Xia Guang-Qing. Numerical investigation on the plasma acceleration of the inductive pulsed plasma thruster. Acta Physica Sinica, 2017, 66(7): 075204. doi: 10.7498/aps.66.075204
    [6] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [7] Yin Peng-Fei, Zhang Rong, Xiong Jiang-Tao, Li Jing-Long. Numerical simulation of coupled thermo-mechanical process of friction stir welding in quasi-steady-state. Acta Physica Sinica, 2013, 62(1): 018102. doi: 10.7498/aps.62.018102
    [8] He Fu-Shun, Li Liu-He, Li Fen, Dun Dan-Dan, Tao Chan-Cai. Numerical simulation of enhanced glow discharge plasma immersion ion implantation using three-dimensional PIC/MC model. Acta Physica Sinica, 2012, 61(22): 225203. doi: 10.7498/aps.61.225203
    [9] Pang Xue-Xia, Deng Ze-Chao, Jia Peng-Ying, Liang Wei-Hua. Numerical simulation of NOx species behaviour in atmosphere plasma. Acta Physica Sinica, 2011, 60(12): 125201. doi: 10.7498/aps.60.125201
    [10] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [11] Cai Li-Bing, Wang Jian-Guo. Numerical simulation of outgassing in the breakdown on dielectric surface irradiated by high power microwave. Acta Physica Sinica, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [12] Yang Jing, Qie Xiu-Shu, Wang Jian-Guo, Zhao Yang, Zhang Qi-Lin, Yuan Tie, Zhou Yun-Jun, Feng Gui-Li. Observation of the lightning_induced voltage in the horizontal conductor and its simulation. Acta Physica Sinica, 2008, 57(3): 1968-1975. doi: 10.7498/aps.57.1968
    [13] Gao Fei, Mao Ming, Ding Zhen-Feng, Wang You-Nian. Langmuir probe measurement and theoretical studies on inductively coupled plasma in Ar-N2 discharge. Acta Physica Sinica, 2008, 57(8): 5123-5129. doi: 10.7498/aps.57.5123
    [14] Liu Feng, Meng Yue-Dong, Ren Zhao-Xing, Shu Xing-Sheng. Characterization of ZrN films deposited by ICP enhanced RF magnetron sputtering. Acta Physica Sinica, 2008, 57(3): 1796-1801. doi: 10.7498/aps.57.1796
    [15] Ma Xiao-Tao, Zheng Wan-Hua, Ren Gang, Fan Zhong-Chao, Chen Liang-Hui. Inductively coupled plasma etching of two-dimensional InP/InGaAsP-based photonic crystal. Acta Physica Sinica, 2007, 56(2): 977-981. doi: 10.7498/aps.56.977
    [16] Di Xiao-Lian, Xin Yu, Ning Zhao-Yuan. Effect of antenna configuration on power transfer efficiency for planar inductively coupled plasmas. Acta Physica Sinica, 2006, 55(10): 5311-5317. doi: 10.7498/aps.55.5311
    [17] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [18] Huang Song, Xin Yu, NingZhao-Yuan. Studies on C22 radical by optical emission spectroscopy in an induc tively-coupled CF44/CH44 plasma. Acta Physica Sinica, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
    [19] Duan Yao-Yong, Guo Yong-Hui, Wang Wen-Sheng, Qiu Ai-Ci. Numerical investigations of Z-pinch plasma instabilities. Acta Physica Sinica, 2004, 53(10): 3429-3434. doi: 10.7498/aps.53.3429
    [20] Wang Yan-Hui, Wang De-Zhen. Numerical simulation of dielectric-barrier-controlled glow discharge at atmosphe ric pressure. Acta Physica Sinica, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
Metrics
  • Abstract views:  7178
  • PDF Downloads:  139
  • Cited By: 0
Publishing process
  • Received Date:  28 September 2020
  • Accepted Date:  09 December 2020
  • Available Online:  15 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回