Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma

ZHAO Yueyue MIAO Yang YANG Wei DU Chengran

Citation:

Influence of dust particles on non-local kinetic behavior in low-pressure radio frequency plasma

ZHAO Yueyue, MIAO Yang, YANG Wei, DU Chengran
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Low-pressure radio-frequency inductively coupled discharges can produce uniformly distributed monodisperse particles and plasma densities, making them widely used in nanodevice fabrication. The manufacturing of nanodevices typically requires the generation of particles ranging from nanometer to submicron scales. These particles, usually carrying negative charges, can significantly influence the discharge characteristics of the plasma. This study investigates the effects of particle size and density on electron bounce resonance heating (BRH) and fundamental plasma properties in low-pressure ICPs using a hybrid model. The hybrid model consists of kinetic equation, electromagnetic field equation, global model equation. Simulation results show that with increasing dust radius or density, the BRH effect—characterized by the formation of a plateau in the electron energy probability function—is gradually suppressed and eventually vanishes, accompanied by a decrease in electron temperature, an increase in electron density, and an increase in particle surface potential. The dust charge decreases with increasing particle density, while exhibiting a nonmonotonic variation with particle radius. The results indicate that the loss of high-energy electrons induced by the presence of dust particles may create a more favorable plasma environment for the growth of low-defect, monodisperse nanoparticles. Such improvement in particle quality is crucial for reducing trap densities and enhancing the electrical performance of nanoparticle-based electronic devices.
  • [1]

    Fortov V E, Ivlev A V, Khrapak S A, Khrapak A G, Morfill G E 2005 Phys. Rep. 421 1

    [2]

    Merlino R L, Goree J A 2004 Phys. Today 57 32

    [3]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, Van De Kerkhof M 2023 Phys. Plasmas 30 120601

    [4]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353

    [5]

    De La Cal E, Martín A, Carralero D, De Pablos J L, Pedrosa M A, Shoji M, Hidalgo C, the TJ-II Team 2013 Phys. Control. Fusion 55 065001

    [6]

    Boufendi L, Bouchoule A 2002 Plasma Sources Sci. Technol. 11 A211

    [7]

    Vladimirov S V, Ostrikov K 2004 Phys. Rep. 393 175

    [8]

    Shukla P K, Eliasson B 2009 Rev. Mod. Phys. 81 25

    [9]

    Kersten H, Deutsch H, Stoffels E, Stoffels W W, Kroesen G M W, Hippler R 2001 Contrib. Plasma Phys. 41 598

    [10]

    Du C R, Feng Y, Wang X G 2022 Manned Spaceflight 28 323 (in Chinese) [杜诚然,冯岩,王晓钢 2022 载人航天 28 323]

    [11]

    Yang W, Wang Y N, Liang Y Y, Huang X J, Zhou H Y, Guo Y, Zhang J, Feng Y, Wang X G, Zhang L X, Du C R 2025 Sci. Sin. Phys. Mech. Astron. 55 105206 (in Chinese) [杨唯,王垚楠,梁颖悦,黄晓江,周鸿颖,郭颖,张菁,冯岩,王晓钢,张立宪,杜诚然2025中国科学:物理学 力学 天文学 55 105206]

    [12]

    Chu J H, I L 1994 Phys. Rev. Lett. 72 4009

    [13]

    Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B, Möhlmann D 1994 Phys. Rev. Lett. 73 652

    [14]

    Liu B, Goree J, Feng Y 2010 Phys. Rev. Lett. 105 085004

    [15]

    Du C R, Nosenko V, Thomas H M, Lin Y F, Morfill G E, Ivlev A V 2019 Phys. Rev. Lett. 123 185002

    [16]

    Nunomura S, Zhdanov S, Samsonov D, Morfill G 2005 Phys. Rev. Lett. 94 045001

    [17]

    Teng L W, Chang M C, Tseng Y P, I L 2009 Phys. Rev. Lett. 103 245005

    [18]

    Couëdel L, Nosenko V, Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2010 Phys. Rev. Lett. 104 195001

    [19]

    Huang H, Ivlev A V, Nosenko V, Yang W, Du C R 2023 Phys. Rev. E 107 045205

    [20]

    Huang D, Baggioli M, Lu S, Ma Z, Feng Y 2023 Phys. Rev. Res. 5 013149

    [21]

    Killer C, Bockwoldt T, Schütt S, Himpel M, Melzer A, Piel A 2016 Phys. Rev. Lett. 116 115002

    [22]

    Wysocki A, Räth C, Ivlev A V, Sütterlin K R, Thomas H M, Khrapak S, Zhdanov S, Fortov V E, Lipaev A M, Molotkov V I, Petrov O F, Löwen H, Morfill G E 2010 Phys. Rev. Lett. 105 045001

    [23]

    Ivlev A V, Zhdanov S K, Thomas H M, Morfill G E 2009 Europhys. Lett. 85 45001

    [24]

    Winter J 2000 Phys. Plasmas 7 3862

    [25]

    Pigarov A Yu, Krasheninnikov S I, Soboleva T K, Rognlien T D 2005 Phys. Plasmas 12 122508

    [26]

    Smirnov R D, Pigarov A Y, Rosenberg M, Krasheninnikov S I, Mendis D A 2007 Plasma Phys. Control. Fusion 49 347

    [27]

    Kokura H, Yoneda S, Nakamura K, Mitsuhira N, Nakamura M, Sugai H 1999 Jpn. J. Appl. Phys. 38 5256

    [28]

    Raha D, Das D 2013 Appl. Surf. Sci. 276 249

    [29]

    Cheng Q, Xu S, Long J D, Ni Z H, Rider A E, Ostrikov K 2008 J. Phys. D: Appl. Phys. 41 055406

    [30]

    Bapat A, Perrey C R, Campbell S A, Barry Carter C, Kortshagen U 2003 J. Appl. Phys. 94 1969

    [31]

    Shen Z, Kortshagen U, Campbell S A 2004 J. Appl. Phys. 96 2204

    [32]

    Shen Z, Kim T, Kortshagen U, McMurry P H, Campbell S A 2003 J. Appl. Phys. 94 2277

    [33]

    Denysenko I B, Kersten H,Azarenkov N A 2015 Phys. Rev. E 92 033102

    [34]

    Wang D Z, Dong J Q 1997 J. Appl. Phys. 81 38

    [35]

    Denysenko I, Yu M Y, Ostrikov K, Smolyakov A 2004 Phys. Rev. E 70 046403

    [36]

    Czarnetzki U, Alves L L 2022 Mod. Plasma Phys. 6 31

    [37]

    Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M, Chung C W 2016 Phys. Plasmas 23 063506

    [38]

    Kolobov V, Godyak V 2019 Phys. Plasmas 26 060601

    [39]

    Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q, Wang Y N 2011 Phys. Rev. Lett. 107 055002

    [40]

    Chung C W, You K I, Seo S H, Kim S S, Chang H Y 2001 Phys. Plasmas 8 2992

    [41]

    Zhang Y R, Gao F, Wang Y N 2021 Acta Phys. Sin. 70 095206 (in Chinese) [张钰如,高飞,王友年 2021 物理学报 70 095206]

    [42]

    Jia W Z, Zhang Q Z, Wang X F, Song Y H, Zhang Y Y, Wang Y N 2019 J. Phys. D: Appl. Phys. 52 015206

    [43]

    De Bleecker K, Bogaerts A, Goedheer W 2004 Phys. Rev. E 70 056407

    [44]

    Boeuf J P 1992 Phys. Rev. A 46 7910

    [45]

    Alexandrov A L, Schweigert I V, Peeters F M 2008 New J. Phys. 10 093025

    [46]

    Wen H, Schulze J, Fu Y, Sun J Y, Zhang Q Z 2025 Plasma Sources Sci. Technol. 34 03LT01

    [47]

    Fu C C, Dong Y C, Li Y F, Wang W Z, Wang Z H, Liu W 2024 J. Phys. D: Appl. Phys. 57 135201

    [48]

    Liu Y X, Zhang Q Z, Zhao K, Zhang Y R, Gao F, Song Y H, Wang Y N 2022 Chin. Phys. B 31 085202

    [49]

    Li S, Rabadanov K M, Bogdanov E A, Kudryavtsev A A, Ashurbekov N A, Yuan C, Zhou Z 2021 Plasma Sources Sci. Technol. 30 047001

    [50]

    Liang Y G, Wang Y, Li H, Tian R H, Yuan C X, Kudryavtsev A A, Rabadanov K M, Wu J, Zhou Z X, Tian H 2018 Phys. Plasmas 25 053702

    [51]

    Fedoseev A V, Demin N A, Salnikov M V, Sukhinin G I 2019 Contrib. Plasma Phys. 59 e201800181

    [52]

    Yang W, Wang Y N 2021 Plasma Phys. Control. Fusion 63 035031

    [53]

    DiPeso G, Vahedi V, Hewett D W, Rognlien T D 1994 J. Vac. Sci. Technol. A 12 1387

    [54]

    Belenguer Ph, Blondeau J Ph, Boufendi L, Toogood M, Plain A, Bouchoule A, Laure C, Boeuf J P 1992 Phys. Rev. A 46 7923

    [55]

    Yang W, Gao F, Wang Y N 2022 Plasma Sci. Technol. 24 055401

    [56]

    Yang W, Gao F, Wang Y N 2022 Phys. Plasmas 29 063503

    [57]

    Allen J E 1992 Phys. Scr. 45 497

    [58]

    Wood B P, Lieberman M A, Lichtenberg A J 1995 IEEE Trans. Plasma Sci. 23 89

  • [1] ZHANG Shunxin, WANG Shuo, LIU Xue, WANG Xinzhan, LIU Fucheng, HE Yafeng. Rectification of dust particles in a dusty plasma metal straight ratchet. Acta Physica Sinica, doi: 10.7498/aps.74.20241740
    [2] Lin Mai-Mai, Song Chen-Guang, Wang Ming-Yue, Chen Fu-Yan. Propagation characteristics of nonlinear dust acoustic solitary waves in complex plasma with nonthermal electrons and trapped ions. Acta Physica Sinica, doi: 10.7498/aps.73.20231967
    [3] Tian Miao, Yao Ting-Yu, Cai Zhi-Min, Liu Fu-Cheng, He Ya-Feng. Three-dimensional numerical simulation of particle separation using a dusty plasma ratchet. Acta Physica Sinica, doi: 10.7498/aps.73.20240319
    [4] Jiang Hong-Fan, Lin Ji, Hu Bei-Bei, Zhang Xiao. Nonlocal soliton in non-parity-time-symmetric coupler. Acta Physica Sinica, doi: 10.7498/aps.72.20230082
    [5] Chen Wei, Huang Hai, Yang Li-Xia, Bo Yong, Huang Zhi-Xiang. Scattering characteristics of non-uniform dusty plasma targets based on Fokker-Planck-Landau collision model. Acta Physica Sinica, doi: 10.7498/aps.72.20222113
    [6] Li Sen-Qing, Zhang Xiao, Lin Ji. Coupled mode and novel soliton structure in fused coupler. Acta Physica Sinica, doi: 10.7498/aps.71.20221273
    [7] Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li. Drift wave in strong collisional dusty magnetoplasma. Acta Physica Sinica, doi: 10.7498/aps.69.20200468
    [8] Sun Jun-Chao, Zhang Zong-Guo, Dong Huan-He, Yang Hong-Wei. Fractional order model and Lump solution in dusty plasma. Acta Physica Sinica, doi: 10.7498/aps.68.20191045
    [9] Wu Dan-Dan, She Wei-Long. Wave coupling theory of nonlocal linear electro-optic effect in a linear absorbent medium. Acta Physica Sinica, doi: 10.7498/aps.66.064202
    [10] Xu Bin, Li Hui, Wang Zhan-Ge, Xu Zheng-Wen, Wu Jian. Study on incoherent scatter theory of high density dusty plasma. Acta Physica Sinica, doi: 10.7498/aps.66.049401
    [11] Gong Wei-Hua, Zhang Yong-Liang, Feng Fan, Liu Fu-Cheng, He Ya-Feng. Complex motions of grains in dusty plasma with nonuniform magnetic field. Acta Physica Sinica, doi: 10.7498/aps.64.195202
    [12] Gao Xing-Hui, Tang Dong, Zhang Cheng-Yun, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal surface dark solitons and their stability analysis. Acta Physica Sinica, doi: 10.7498/aps.63.024204
    [13] Li Xue-Liang, Shi Yan-Xiang. Theoretical study on charging equation of dust plasmas in double Maxwellian distribution. Acta Physica Sinica, doi: 10.7498/aps.63.215201
    [14] Gao Xing-Hui, Zhang Cheng-Yun, Tang Dong, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal dark soliton and its linear stability analysis. Acta Physica Sinica, doi: 10.7498/aps.62.044214
    [15] Zhong Sheng-Ren. Instability and interaction of the nonlinear solitary waves in two-temperature-ion dusty plasma. Acta Physica Sinica, doi: 10.7498/aps.59.2178
    [16] Ding Zhen-Feng, Yuan Guo-Yu, Gao Wei, Sun Jing-Chao. Experimental studies on the properties of the discharge modes in a cylindrical radio frequency inductively coupled plasma. Acta Physica Sinica, doi: 10.7498/aps.57.4304
    [17] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, doi: 10.7498/aps.55.5318
    [18] Wu Jing, Zhang Peng-Yun, Song Qiao-Li, Zhang Jia-Liang, Wang De-Zhen. Investigation of void in dust clouds in reactive plasma. Acta Physica Sinica, doi: 10.7498/aps.54.4794
    [19] Hong Xue-Ren, Duan Wen-Shan, Sun Jian-An, Shi Yu-Ren, Lü Ke-Pu. The propagation of solitons in an inhomogeneous dusty plasma. Acta Physica Sinica, doi: 10.7498/aps.52.2671
    [20] CHEN XIAO-HUA, WU GUO-TAO, DENG FU-MING, WANG JIAN-XIONG, YANG HANG-SHENG, WANG MIAO, LU XIAO-NAN, PENG JING-CUI, LI WEN-ZHU. GROWING CARBON BUCKONIONS BY RADIO FREQUENCY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION. Acta Physica Sinica, doi: 10.7498/aps.50.1264
Metrics
  • Abstract views:  239
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  04 September 2025
  • /

    返回文章
    返回