-
In the re-entry process of the vehicle into the atmosphere, the high-temperature environment, induced by the compression of the strong shock wave and viscous retardation, is created around the head of a vehicle. These generate a conductive plasma flow field, which provides a direct working environment for the application of magnetohydrodynaimic (MHD) control technology. Numerical simulations based on thermochemical non-equilibrium MHD model are adopted to analyze the surface heat flux of an orbital reentry experiment (OREX) vehicle. The influences of wall catalytic conditions on the aerothermal environment under different flight conditions are discussed. In addition, the control mechanism of an external magnetic field on high-temperature thermochemical non-equilibrium flow field is analyzed. The results show that the distribution of surface heat flux monotonically increases with the catalytic recombination coefficient increasing, and the surface heat flux rises and then drops with the flight altitude decreasing. Moreover, the wall catalytic properties significantly affect the efficiency of MHD control technology, and the total heat flux is closely related to the accumulation of atomic components, diffusion gradient and temperature gradient near the wall region. With an external magnetic field applied, the accumulation of oxygen atoms and nitrogen atoms near the wall can be reduced. Moreover, the Lorentz force can increase the shock standoff distance, and then reduce the component diffusion gradient and wall temperature gradient. Under three different wall catalytic conditions, the ability to control the surface heat flux MHD is ranked from strong to weak as fully catalyzed, partially catalyzed and non-catalyzed.
-
Keywords:
- thermochemical non-equilibrium /
- magnetohydrodynamic /
- catalytic effect /
- numerical simulation
-
表 1 高温空气里主要发生的反应类型及正逆反应控制温度[24]
Table 1. Main types of reactions in high temperature air and control temperature of forward and reverse reactions[24].
反应类型 反应表达式 控制温度 离解反应 $ {\text{AB}} + {\text{M}} \rightleftarrows {\text{A}} + {\text{B}} + {\text{M}} $ $ 正向: {T}_{\text{f}} = {T}^{\alpha }{T}_{v}^{1-\alpha };\text{ }逆向: {T}_{\text{b}} = T $ 交换反应 $ \begin{gathered} {\text{AB}} + {\text{C}} \rightleftarrows {\text{A}} + {\text{BC}} \\ {\text{A}}{{\text{B}}^ + } + {\text{C}} \rightleftarrows {{\text{A}}^ + } + {\text{BC}} \\ \end{gathered} $ $ 正向: {T}_{\text{f}} = T;\text{ }逆向: {T}_{\text{b}} = T $ 一般电离反应 $ \begin{gathered} {\text{A}} + {\text{B}} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {{\mathrm{e}}^ - } \\ {\text{AB}} + {\text{M}} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {{\mathrm{e}}^ - } + {\text{M}} \\ {{\text{A}}_2} + {{\text{B}}_2} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {\text{AB}} + {{\mathrm{e}}^ - } \\ \end{gathered} $ $ 正向: {T}_{\text{f}} = T;\text{ }逆向: {T}_{\text{b}} = {T}_{v} $ 电子碰撞电离反应 $ {\text{A}} + {{\mathrm{e}}^ - } \rightleftarrows {{\text{A}}^ + } + {{\mathrm{e}}^ - } + {{\mathrm{e}}^ - } $ $ 正向: {T}_{{\mathrm{f}}} = {T}_{v};\text{ }逆向: {T}_{\text{b}} = {T}_{v} $ 表 2 高焓球头实验流场参数
Table 2. Flow field parameters of high enthalpy ball head experiment.
参数 符号 值 速度/(km·s–1) ${V_\infty }$ 7.99 来流温度/K T∞ 345 总焓/(MJ·kg–1) ${H_0}$ 32 来流密度/(kg·m–3) ρ∞ 1.77×10–4 算例 飞行时间 H/km ${\rho _\infty }$/(kg·m–3) Ma ${T_\infty }$/K C1 7441.5 71.73 6.489 e-5 23.89 214.98 C2 7451.5 67.66 1.143 e-4 22.22 225.99 C3 7461.5 63.60 1.960 e-4 20.09 237.14 C4 7471.5 59.60 3.255 e-4 17.55 248.12 C5 7481.5 55.74 5.203 e-4 14.71 258.74 C6 7491.5 51.99 8.065 e-4 11.80 268.20 C7 7501.5 48.40 1.253 e-3 9.06 270.65 表 4 OREX飞行器计算网格
Table 4. Computational grid for OREX vehicle.
网格 $\Delta n$/(10–6 m) $R{e_{\Delta n, \infty }}$ Case_M1 252.00 20 Case_M2 126.00 10 Case_M3 50.00 4 Case_M4 25.00 2 Case_M5 7.20 0.6 Case_M6 3.60 0.3 表 5 OREX各工况与实验数据拟合得到的驻点有效催化复合系数
Table 5. Effective recombination coefficient at stagnation point in accordance with experimental data under various OREX conditions.
工况 H /km 驻点热流实验结果${Q_{{\text{w}}, \exp }}/({\text{MW}} \cdot {{\text{M}}^{ - 2}})$ 实验数据
拟合有效
催化系数
γ/10–3C1 71.73 0.354 7.7 C2 67.66 0.401 6.3 C3 63.60 0.410 5.5 C4 59.60 0.369 4.2 C5 55.74 0.275 5.5 C6 51.99 0.179 9.6 C7 48.40 0.093 36.0 -
[1] 罗仕超, 张志刚, 柳军, 龚红明, 胡守超, 吴里银, 常雨, 庄宇, 李贤, 黄成扬 2023 力学学报 55 2439Google Scholar
Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theor. Appl. Mech. 55 2439Google Scholar
[2] Cui Z L, Zhao J, Yao J 2022 Chin. J Aeronaut. 35 56Google Scholar
[3] Bonelli F, Pascazio G, Colonna G 2021 Phys. Rev. Fluids 6 033201Google Scholar
[4] Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut. 201 247Google Scholar
[5] Yu M H, Qiu Z Y, Takahashi Y 2023 Phys. Fluids 35 056106Google Scholar
[6] 周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095Google Scholar
Zhou K, Peng J, Ou D B 2020 Sci. Sin. Technol. 50 1095Google Scholar
[7] 丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2018 航空学报 39 121588
Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 121588
[8] 苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476Google Scholar
Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476Google Scholar
[9] 苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442
Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422
[10] 莫凡, 王锁柱, 高振勋 2021 气体物理 6 1
Mo F, Wang T Z, Gao Z X 2021 Phys. Gases 6 1
[11] 梁伟, 金华, 孟松鹤, 杨强, 曾庆轩, 许承海 2021 宇航学报 42 409Google Scholar
Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409Google Scholar
[12] 罗凯, 汪球, 李逸翔, 李进平, 赵伟 2021 力学学报 53 1515
Luo K, Wang Q, Li J Y, Li J P, Zhao W 2024 Chin. J. Theor. Appl. Mech. 53 1515
[13] Peng S, Jin K, Zheng X 2022 AIAA J. 60 6536Google Scholar
[14] 陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752
Chen G, Zhang J B, Li C X 2008 Chin. J. Theor. Appl. Mech. 40 752
[15] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2019 航空学报 40 123009
Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fuyang O X 2019 Acta Aeronaut. Astronaut. Sin. 40 123009
[16] Heather A M, Nikos N 2021 Phys. Fluids 34 107114
[17] 滕子昂, 周志峰, 张智超, 许珂, 高振勋 2024 气动研究与试验 02 86
Teng Z A, Zhou Z F, Zhang Z C, Xu K, Gao Z X 2024 Aerodynamic Research & Experiment 02 86
[18] Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232
[19] Shang J J S, Yan H 2020 Adv. Aerodyn. 2 19Google Scholar
[20] Candler G V 2019 Annu. Rev. Fluid Mech. 51 379Google Scholar
[21] Zhang W, Zhang Z, Wang X 2022 Adv. Aerodyn. 4 38Google Scholar
[22] Park C, Griffith W 1991 Phys. Today 44 98
[23] Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867
[24] 蒋浩, 车学科, 张天天, 龚陟阳, 柴振霞, 柳军 2023 空天技术 3 40
Jiang H, Che X K, Zhang T T, Gong Z Y, Chai Z X, Liu J 2023 Aerosp. Technol. 3 45
[25] 李鹏, 陈坚强, 丁明松, 梅杰, 何先耀, 董维中 2021 航空学报 42 726400Google Scholar
Li P, Cheng J Q, Ding M S, Mei J, He X Y, Dong W Z 2021 Acta Aeronaut. Astronaut. Sin. 42 726400Google Scholar
[26] MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J. Spacecraft Rockets 50 470Google Scholar
[27] 莫凡, 高振勋, 蒋崇文, 李椿萱 2021 中国科学: 物理学 力学 天文学 51 104703Google Scholar
Mo F, Gao Z X, Jiang C W, Li C X 2021 Sci. Sin. Phys. Mech. Astron. 51 104703Google Scholar
[28] Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041Google Scholar
[29] 李开 2017 博士学位论文 (长沙: 国防科技大学)
Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology
[30] Doihara R, Nishida M 2002 Shock Waves 11 331Google Scholar
[31] 罗仕超, 吴里银, 常雨 2022 物理学报 71 214702Google Scholar
Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702Google Scholar
[32] 罗仕超, 胡守超, 柳军, 吴里银, 孔小平, 常雨, 吕明磊 2024 中国科学: 物理学 力学 天文学 54 274711Google Scholar
Luo S C, Hu S C, Liu J, Wu L Y, Kong X P, Chang Y, Lü M L 2024 Sci. Sin. Phys. Mech. Astron. 54 274711Google Scholar
[33] Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1Google Scholar
[34] 张智超, 高振勋, 蒋崇文, 李椿萱 2015 北京航空航天大学学报 41 594
Zhang Z C, Gao Z X, Jiang C W. Li C X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 594
Metrics
- Abstract views: 104
- PDF Downloads: 3
- Cited By: 0