Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field

LUO Shichao WU Liyin HU Shouchao GONG Hongming LYU Minglei KONG Xiaoping

Citation:

Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field

LUO Shichao, WU Liyin, HU Shouchao, GONG Hongming, LYU Minglei, KONG Xiaoping
cstr: 32037.14.aps.74.20241307
PDF
HTML
Get Citation
  • In the re-entry process of the vehicle into the atmosphere, the high-temperature environment, induced by the compression of the strong shock wave and viscous retardation, is created around the head of a vehicle. These generate a conductive plasma flow field, which provides a direct working environment for the application of magnetohydrodynaimic (MHD) control technology. Numerical simulations based on thermochemical non-equilibrium MHD model are adopted to analyze the surface heat flux of an orbital reentry experiment (OREX) vehicle. The influences of wall catalytic conditions on the aerothermal environment under different flight conditions are discussed. In addition, the control mechanism of an external magnetic field on high-temperature thermochemical non-equilibrium flow field is analyzed. The results show that the distribution of surface heat flux monotonically increases with the catalytic recombination coefficient increasing, and the surface heat flux rises and then drops with the flight altitude decreasing. Moreover, the wall catalytic properties significantly affect the efficiency of MHD control technology, and the total heat flux is closely related to the accumulation of atomic components, diffusion gradient and temperature gradient near the wall region. With an external magnetic field applied, the accumulation of oxygen atoms and nitrogen atoms near the wall can be reduced. Moreover, the Lorentz force can increase the shock standoff distance, and then reduce the component diffusion gradient and wall temperature gradient. Under three different wall catalytic conditions, the ability to control the surface heat flux MHD is ranked from strong to weak as fully catalyzed, partially catalyzed and non-catalyzed.
      Corresponding author: KONG Xiaoping, kongxiaoping08@126.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0405200) and the Sichuan Provincial Science and Technology Program of China (Grant No. 2024NSFSC1378).
    [1]

    罗仕超, 张志刚, 柳军, 龚红明, 胡守超, 吴里银, 常雨, 庄宇, 李贤, 黄成扬 2023 力学学报 55 2439Google Scholar

    Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theor. Appl. Mech. 55 2439Google Scholar

    [2]

    Cui Z L, Zhao J, Yao J 2022 Chin. J Aeronaut. 35 56Google Scholar

    [3]

    Bonelli F, Pascazio G, Colonna G 2021 Phys. Rev. Fluids 6 033201Google Scholar

    [4]

    Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut. 201 247Google Scholar

    [5]

    Yu M H, Qiu Z Y, Takahashi Y 2023 Phys. Fluids 35 056106Google Scholar

    [6]

    周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095Google Scholar

    Zhou K, Peng J, Ou D B 2020 Sci. Sin. Technol. 50 1095Google Scholar

    [7]

    丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2018 航空学报 39 121588

    Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 121588

    [8]

    苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476Google Scholar

    Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476Google Scholar

    [9]

    苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442

    Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422

    [10]

    莫凡, 王锁柱, 高振勋 2021 气体物理 6 1

    Mo F, Wang T Z, Gao Z X 2021 Phys. Gases 6 1

    [11]

    梁伟, 金华, 孟松鹤, 杨强, 曾庆轩, 许承海 2021 宇航学报 42 409Google Scholar

    Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409Google Scholar

    [12]

    罗凯, 汪球, 李逸翔, 李进平, 赵伟 2021 力学学报 53 1515

    Luo K, Wang Q, Li J Y, Li J P, Zhao W 2024 Chin. J. Theor. Appl. Mech. 53 1515

    [13]

    Peng S, Jin K, Zheng X 2022 AIAA J. 60 6536Google Scholar

    [14]

    陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theor. Appl. Mech. 40 752

    [15]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fuyang O X 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [16]

    Heather A M, Nikos N 2021 Phys. Fluids 34 107114

    [17]

    滕子昂, 周志峰, 张智超, 许珂, 高振勋 2024 气动研究与试验 2 86

    Teng Z A, Zhou Z F, Zhang Z C, Xu K, Gao Z X 2024 Aerodynamic Research & Experiment 2 86

    [18]

    Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232

    [19]

    Shang J J S, Yan H 2020 Adv. Aerodyn. 2 19Google Scholar

    [20]

    Candler G V 2019 Annu. Rev. Fluid Mech. 51 379Google Scholar

    [21]

    Zhang W, Zhang Z, Wang X 2022 Adv. Aerodyn. 4 38Google Scholar

    [22]

    蒋浩, 车学科, 张天天, 龚陟阳, 柴振霞, 柳军 2023 空天技术 3 40

    Jiang H, Che X K, Zhang T T, Gong Z Y, Chai Z X, Liu J 2023 Aerosp. Technol. 3 45

    [23]

    Park C, Griffith W 1991 Phys. Today 44 98

    [24]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867

    [25]

    李鹏, 陈坚强, 丁明松, 梅杰, 何先耀, 董维中 2021 航空学报 42 726400Google Scholar

    Li P, Cheng J Q, Ding M S, Mei J, He X Y, Dong W Z 2021 Acta Aeronaut. Astronaut. Sin. 42 726400Google Scholar

    [26]

    MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J. Spacecraft Rockets 50 470Google Scholar

    [27]

    莫凡, 高振勋, 蒋崇文, 李椿萱 2021 中国科学: 物理学 力学 天文学 51 104703Google Scholar

    Mo F, Gao Z X, Jiang C W, Li C X 2021 Sci. Sin. Phys. Mech. Astron. 51 104703Google Scholar

    [28]

    Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041Google Scholar

    [29]

    李开 2017 博士学位论文 (长沙: 国防科技大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [30]

    Doihara R, Nishida M 2002 Shock Waves 11 331Google Scholar

    [31]

    罗仕超, 吴里银, 常雨 2022 物理学报 71 214702Google Scholar

    Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702Google Scholar

    [32]

    罗仕超, 胡守超, 柳军, 吴里银, 孔小平, 常雨, 吕明磊 2024 中国科学: 物理学 力学 天文学 54 274711Google Scholar

    Luo S C, Hu S C, Liu J, Wu L Y, Kong X P, Chang Y, Lü M L 2024 Sci. Sin. Phys. Mech. Astron. 54 274711Google Scholar

    [33]

    Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1Google Scholar

    [34]

    张智超, 高振勋, 蒋崇文, 李椿萱 2015 北京航空航天大学学报 41 594

    Zhang Z C, Gao Z X, Jiang C W. Li C X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 594

  • 图 1  高焓膨胀管球头脱体激波实验图像与计算结果对比

    Figure 1.  Comparison between high enthalpy expansion tube experimental images and calculated results of ball head detached shock wave.

    图 2  不同催化壁面条件热流计算结果与实验结果对比

    Figure 2.  Comparison between calculated heat flux under different catalytic wall conditions and experimental results.

    图 3  不同壁面催化条件下热流分布 (a) 完全催化; (b) 部分催化; (c) 非催化

    Figure 3.  Heat flux distribution under different wall catalytic conditions: (a) Full catalysis; (b) partially catalysis: (c) non-catalysis.

    图 4  不同壁面催化模型OREX算例驻点热流计算与实验结果的比较

    Figure 4.  Comparison of computed stagnation point heat flux with OREX experimental results under different wall catalytic models.

    图 5  OREX各工况驻点热流随壁面催化复合系数的变化曲线

    Figure 5.  Variation of stagnation point heat flux along wall catalytic recombination coefficient under various OREX conditions.

    图 6  外加磁场对流场洛伦兹力及感应电流分布的影响(FCW)

    Figure 6.  Lorentz force and annular electric current distribution with an external magnetic field applied (FCW).

    图 7  外加磁场对流场振动焦耳热源项分布的影响(FCW)

    Figure 7.  Vibrational Joule heat energy source term distribution with an external magnetic field applied (FCW).

    图 8  全催化壁面外加磁场对流场温度分布的影响

    Figure 8.  Temperature contour distribution under fully catalytic wall conditions with an external magnetic field applied.

    图 9  不同壁面催化条件、磁场条件对驻点线温度分布的影响 (a) 平动温度; (b) 振动温度

    Figure 9.  Temperature distribution along stagnation point line under different wall catalytic conditions with an external magnetic field applied: (a) Translational temperature; (b) vibrational temperature.

    图 10  不同磁场强度作用下组元质量分数分布云图(FCW)

    Figure 10.  Species contour structure under different imposed magnetic field strengths (FCW).

    图 11  不同磁场强度作用下驻点线组元质量分数分布(FCW)

    Figure 11.  Mass fraction of the species along stagnation point line under different imposed magnetic field strengths (FCW).

    图 12  不同磁场强度作用下驻点线组元质量分数分布(PCW, γ = 7.7×10–3)

    Figure 12.  Mass fraction of the species along stagnation point line under different imposed magnetic field strengths (PCW, γ = 7.7×10–3)

    图 13  不同壁面催化条件下MHD流场压力分布轮廓图

    Figure 13.  MHD flow field pressure profiles under different wall catalytic conditions.

    图 14  不同壁面催化条件下驻点总热流密度随磁场强度的变化情况 (a) 总热流; (b) 传导热流; (c) 扩散热流

    Figure 14.  Variation of heat flux at stagnation point along magnetic field strength under different wall catalysis conditions: (a) Total heat flux; (b) conductive heat flux; (c) diffusion heat flux.

    表 1  高温空气里主要发生的反应类型及正逆反应控制温度[22]

    Table 1.  Main types of reactions in high temperature air and control temperature of forward and reverse reactions[22].

    反应类型 反应表达式 控制温度
    离解反应 $ {\text{AB}} + {\text{M}} \rightleftarrows {\text{A}} + {\text{B}} + {\text{M}} $ $ 正向 : {T}_{\text{f}} = {T}^{\alpha }{T}_{v}^{1-\alpha };\text{ }逆向 : {T}_{\text{b}} = T $
    交换反应 $ \begin{array}{c} {\text{AB}} + {\text{C}} \rightleftarrows {\text{A}} + {\text{BC}} \\ {\text{A}}{{\text{B}}^ + } + {\text{C}} \rightleftarrows {{\text{A}}^ + } + {\text{BC}} \end{array} $ $ 正向 : {T}_{\text{f}} = T;\text{ }逆向 : {T}_{\text{b}} = T $
    一般电离反应 $ \begin{array}{c} {\text{A}} + {\text{B}} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {{\mathrm{e}}^ - } \\ {\text{AB}} + {\text{M}} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {{\mathrm{e}}^ - } + {\text{M}} \\ {{\text{A}}_2} + {{\text{B}}_2} \rightleftarrows {\text{A}}{{\text{B}}^ + } + {\text{AB}} + {{\mathrm{e}}^ - } \end{array} $ $ 正向 : {T}_{\text{f}} = T;\text{ }逆向 : {T}_{\text{b}} = {T}_{v} $
    电子碰撞电离反应 $ {\text{A}} + {{\mathrm{e}}^ - } \rightleftarrows {{\text{A}}^ + } + {{\mathrm{e}}^ - } + {{\mathrm{e}}^ - } $ $ 正向 : {T}_{{\mathrm{f}}} = {T}_{v};\text{ }逆向 : {T}_{\text{b}} = {T}_{v} $
    DownLoad: CSV

    表 2  高焓球头实验流场参数

    Table 2.  Flow field parameters of high enthalpy ball head experiment.

    参数 符号
    速度/(km·s–1) ${V_\infty }$ 7.99
    来流温度/K T 345
    总焓/(MJ·kg–1) ${H_0}$ 32
    来流密度/(kg·m–3) ρ 1.77×10–4
    DownLoad: CSV

    表 3  OREX计算工况[30]

    Table 3.  Flow conditions for the OREX simulation[30].

    算例 飞行时间 H/km ${\rho _\infty }$/(kg·m–3) Ma ${T_\infty }$/K
    C1 7441.5 71.73 6.489×10–5 23.89 214.98
    C2 7451.5 67.66 1.143×10–4 22.22 225.99
    C3 7461.5 63.60 1.960×10–4 20.09 237.14
    C4 7471.5 59.60 3.255×10–4 17.55 248.12
    C5 7481.5 55.74 5.203×10–4 14.71 258.74
    C6 7491.5 51.99 8.065×10–4 11.80 268.20
    C7 7501.5 48.40 1.253×10–3 9.06 270.65
    DownLoad: CSV

    表 4  OREX飞行器计算网格

    Table 4.  Computational grid for OREX vehicle.

    网格 $\Delta n$/(10–6 m) $R{e_{\Delta n, \infty }}$
    Case_M1 252.00 20
    Case_M2 126.00 10
    Case_M3 50.00 4
    Case_M4 25.00 2
    Case_M5 7.20 0.6
    Case_M6 3.60 0.3
    DownLoad: CSV

    表 5  OREX各工况与实验数据拟合得到的驻点有效催化复合系数

    Table 5.  Effective recombination coefficient at stagnation point in accordance with experimental data under various OREX conditions.

    工况 H /km 驻点热流实验结果$ Q_{\text{w},\exp}/(\text{MW}{\cdot}\text{m}^{-2}) $ 实验数据
    拟合有效
    催化系数
    γ/10–3
    C1 71.73 0.354 7.7
    C2 67.66 0.401 6.3
    C3 63.60 0.410 5.5
    C4 59.60 0.369 4.2
    C5 55.74 0.275 5.5
    C6 51.99 0.179 9.6
    C7 48.40 0.093 36.0
    DownLoad: CSV
  • [1]

    罗仕超, 张志刚, 柳军, 龚红明, 胡守超, 吴里银, 常雨, 庄宇, 李贤, 黄成扬 2023 力学学报 55 2439Google Scholar

    Luo S C, Zhang Z G, Liu J, Gong H M, Hu S C, Wu L Y, Chang Y, Zhuang Y, Li X, Huang C Y 2023 Chin. J. Theor. Appl. Mech. 55 2439Google Scholar

    [2]

    Cui Z L, Zhao J, Yao J 2022 Chin. J Aeronaut. 35 56Google Scholar

    [3]

    Bonelli F, Pascazio G, Colonna G 2021 Phys. Rev. Fluids 6 033201Google Scholar

    [4]

    Davide N, Francesco B, Gianpiero C 2022 Acta Astronaut. 201 247Google Scholar

    [5]

    Yu M H, Qiu Z Y, Takahashi Y 2023 Phys. Fluids 35 056106Google Scholar

    [6]

    周凯, 彭俊, 欧东斌 2020 中国科学: 技术科学 50 1095Google Scholar

    Zhou K, Peng J, Ou D B 2020 Sci. Sin. Technol. 50 1095Google Scholar

    [7]

    丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2018 航空学报 39 121588

    Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 121588

    [8]

    苗文博, 程晓丽, 艾邦成 2011 空气动力学学报 29 476Google Scholar

    Miao W B, Cheng X L, Ai B C 2011 Acta Aerodyn. Sin. 29 476Google Scholar

    [9]

    苗文博, 程晓丽, 艾邦成, 沈清 2013 宇航学报 34 442

    Miao W B, Cheng X L, Ai B C, Sheng Q 2013 J. Astronaut. 34 422

    [10]

    莫凡, 王锁柱, 高振勋 2021 气体物理 6 1

    Mo F, Wang T Z, Gao Z X 2021 Phys. Gases 6 1

    [11]

    梁伟, 金华, 孟松鹤, 杨强, 曾庆轩, 许承海 2021 宇航学报 42 409Google Scholar

    Liang H, Jing H, Meng S H 2021 J. Astronaut. 42 409Google Scholar

    [12]

    罗凯, 汪球, 李逸翔, 李进平, 赵伟 2021 力学学报 53 1515

    Luo K, Wang Q, Li J Y, Li J P, Zhao W 2024 Chin. J. Theor. Appl. Mech. 53 1515

    [13]

    Peng S, Jin K, Zheng X 2022 AIAA J. 60 6536Google Scholar

    [14]

    陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theor. Appl. Mech. 40 752

    [15]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fuyang O X 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [16]

    Heather A M, Nikos N 2021 Phys. Fluids 34 107114

    [17]

    滕子昂, 周志峰, 张智超, 许珂, 高振勋 2024 气动研究与试验 2 86

    Teng Z A, Zhou Z F, Zhang Z C, Xu K, Gao Z X 2024 Aerodynamic Research & Experiment 2 86

    [18]

    Gupta R N, Yos J M, Thompson R, Lee K P 1990 NASA RP-1232

    [19]

    Shang J J S, Yan H 2020 Adv. Aerodyn. 2 19Google Scholar

    [20]

    Candler G V 2019 Annu. Rev. Fluid Mech. 51 379Google Scholar

    [21]

    Zhang W, Zhang Z, Wang X 2022 Adv. Aerodyn. 4 38Google Scholar

    [22]

    蒋浩, 车学科, 张天天, 龚陟阳, 柴振霞, 柳军 2023 空天技术 3 40

    Jiang H, Che X K, Zhang T T, Gong Z Y, Chai Z X, Liu J 2023 Aerosp. Technol. 3 45

    [23]

    Park C, Griffith W 1991 Phys. Today 44 98

    [24]

    Gnoffo P A, Gupta R N, Shinn J L 1989 NASA/TP–2867

    [25]

    李鹏, 陈坚强, 丁明松, 梅杰, 何先耀, 董维中 2021 航空学报 42 726400Google Scholar

    Li P, Cheng J Q, Ding M S, Mei J, He X Y, Dong W Z 2021 Acta Aeronaut. Astronaut. Sin. 42 726400Google Scholar

    [26]

    MacLean M, Marineau E, Parker R, Dufrene A, Holden M, DesJardin P 2013 J. Spacecraft Rockets 50 470Google Scholar

    [27]

    莫凡, 高振勋, 蒋崇文, 李椿萱 2021 中国科学: 物理学 力学 天文学 51 104703Google Scholar

    Mo F, Gao Z X, Jiang C W, Li C X 2021 Sci. Sin. Phys. Mech. Astron. 51 104703Google Scholar

    [28]

    Luo S C, Wu L Y, Chang Y 2023 Aerosp. Sci. Technol. 132 108041Google Scholar

    [29]

    李开 2017 博士学位论文 (长沙: 国防科技大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [30]

    Doihara R, Nishida M 2002 Shock Waves 11 331Google Scholar

    [31]

    罗仕超, 吴里银, 常雨 2022 物理学报 71 214702Google Scholar

    Luo S C, Wu L Y, Chang Y 2022 Acta Phys. Sin. 71 214702Google Scholar

    [32]

    罗仕超, 胡守超, 柳军, 吴里银, 孔小平, 常雨, 吕明磊 2024 中国科学: 物理学 力学 天文学 54 274711Google Scholar

    Luo S C, Hu S C, Liu J, Wu L Y, Kong X P, Chang Y, Lü M L 2024 Sci. Sin. Phys. Mech. Astron. 54 274711Google Scholar

    [33]

    Fujino T, Shimosawa Y 2016 J. Spacecraft Rockets 53 1Google Scholar

    [34]

    张智超, 高振勋, 蒋崇文, 李椿萱 2015 北京航空航天大学学报 41 594

    Zhang Z C, Gao Z X, Jiang C W. Li C X 2015 J. Beijing Univ. Aeronaut. Astronaut. 41 594

  • [1] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] Niu Yue, Bao Wei-Min, Li Xiao-Ping, Liu Yan-Ming, Liu Dong-Lin. Numerical simulation and experimental study of high-power thermal equilibrium inductively coupled plasma. Acta Physica Sinica, 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] Ding Ming-Song, Jiang Tao, Liu Qing-Zong, Dong Wei-Zhong, Gao Tie-Suo, Fu Yang-Aoxiao. An improved low magnetic Reynolds magnetohydrodynamic method based on computing induced magnetic vector potential by integrating induced current. Acta Physica Sinica, 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [4] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] Yu Ming-Hao. Numerical investigation on interaction mechanisms between flow field and electromagnetic field for nonequilibrium inductively coupled plasma. Acta Physica Sinica, 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [6] Jiang Chun-Hua, Zhao Zheng-Yu. Numerical simulation of recombination rate effect on development of equatorial plasma bubbles. Acta Physica Sinica, 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [7] Li Zhi-Xuan, Yue Ming-Xin, Zhou Guan-Qun. Three-dimensional numerical simulation of electromagnetic diffusion problem and magnetization effects. Acta Physica Sinica, 2019, 68(3): 030201. doi: 10.7498/aps.68.20181567
    [8] Dong Guo-Dan, Guo Ze-Qing, Qin Jian-Hua, Zhang Huan-Hao, Jiang Xiao-Hai, Chen Zhi-Hua, Sha Sha. Numerical investigations of Richtmyer-Meshkov instability in different magnetic field configurations and the corresponding dynamic mode decomposition. Acta Physica Sinica, 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [9] Liu Ying, Chen Zhi-Hua, Zheng Chun. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid. Acta Physica Sinica, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [10] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [11] Dong Guo-Dan, Zhang Huan-Hao, Lin Zhen-Ya, Qin Jian-Hua, Chen Zhi-Hua, Guo Ze-Qing, Sha Sha. Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field. Acta Physica Sinica, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [12] Ma Li-Qiang, Su Tie-Xiong, Liu Han-Tao, Meng-Qing. Numerical simulation on oscillation of micro-drops by means of smoothed particle hydrodynamics. Acta Physica Sinica, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [13] Gao Qi, Zhang Chuan-Fei, Zhou Lin, Li Zheng-Hong, Wu Ze-Qing, Lei Yu, Zhang Chun-Lai, Zu Xiao-Tao. Simulation of Z-pinch Al plasma radiation and correction with considering superposition effect. Acta Physica Sinica, 2014, 63(12): 125202. doi: 10.7498/aps.63.125202
    [14] Xue Chuang, Ding Ning, Sun Shun-Kai, Xiao De-Long, Zhang Yang, Huang Jun, Ning Cheng, Shu Xiao-Jian. Full circuit model for coupling pulsed power driver with Z-pinch load. Acta Physica Sinica, 2014, 63(12): 125207. doi: 10.7498/aps.63.125207
    [15] Li Zhe, Jiang Hai-He, Wang Li, Yang Jing-Wei, Wu Xian-You. Numerical simulation and experimental study of thermal-induced-depolarization in 2 m Cr,Tm,Ho:YAG laser. Acta Physica Sinica, 2012, 61(4): 044205. doi: 10.7498/aps.61.044205
    [16] Cai Li-Bing, Wang Jian-Guo, Zhu Xiang-Qin. Numerical simulation of multipactor on dielectric surface in high direct current field. Acta Physica Sinica, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [17] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [18] Song Nan-Nan, Wu Shi-Ping, Luan Yi-Kun, Kang Xiu-Hong, Li Dian-Zhong. Numerical simulation and hydraulic experiment of horizontal centrifugal casting. Acta Physica Sinica, 2009, 58(13): 112-S117. doi: 10.7498/aps.58.112
    [19] Qian Xian-Mei, Zhu Wen-Yue, Rao Rui-Zhong. Phase screen distribution for simulating laser propagation along an inhomogeneous atmospheric path. Acta Physica Sinica, 2009, 58(9): 6633-6639. doi: 10.7498/aps.58.6633
    [20] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
Metrics
  • Abstract views:  316
  • PDF Downloads:  7
  • Cited By: 0
Publishing process
  • Received Date:  18 September 2024
  • Accepted Date:  25 November 2024
  • Available Online:  05 December 2024
  • Published Online:  20 January 2025

/

返回文章
返回