Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An improved low magnetic Reynolds magnetohydrodynamic method based on computing induced magnetic vector potential by integrating induced current

Ding Ming-Song Jiang Tao Liu Qing-Zong Dong Wei-Zhong Gao Tie-Suo Fu Yang-Aoxiao

Citation:

An improved low magnetic Reynolds magnetohydrodynamic method based on computing induced magnetic vector potential by integrating induced current

Ding Ming-Song, Jiang Tao, Liu Qing-Zong, Dong Wei-Zhong, Gao Tie-Suo, Fu Yang-Aoxiao
PDF
HTML
Get Citation
  • Aming at the applicability of low magnetic Reynolds number method, in this paper we analyze the differences in the application of low magnetic Reynolds number condition and the limitation of full MHD method when it is applied to hypersonic flow. According to the low magnetic Reynolds number magneto-hydrodynamic control numerical simulation method, computing magnetic vector potential through integrating induced current, and considering the reduction of computation domain caused by truncation factors, we propose a low magnetic Reynolds number MHD computation method which is adjusted by the induced magnetic field, and the validation of this method is also presented. Through the numerical simulation of RAM-C blunt cone in flight test condition, we analyze the discrepancy caused by “neglecting induced magnetic field”, and also discuss the principle of the application of low magnetic Reynolds number assumption of hypersonic flow. The obtained results are as follows. (1) The adjusted computation method developed in this paper breaks through the limit of low magnetic Reynolds number, and expands the application range of low magnetic Reynolds number method to hypersonic flow, the numerical simulation result is reliable; Compared with direct integration of Biot-Savart law, the computation efficiency is considerably improved. (2) In the hypersonic flow, the influence of induced magnetic field is presented, thus weakening and distorting the applied magnetic field macroscopically, as a result weakening the effect of magnetic control to some extent. Under the condition of this paper, the low magnetic Reynolds number condition “Rem < 0.1” is probably too conservative, and it is better to adopt Rem < 1.0, and the characteristic conductivity and characteristic length should be chosen according to the actual plasma distribution.
      Corresponding author: Dong Wei-Zhong, dongwz1966@163.com
    [1]

    田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [2]

    潘勇 2007 博士学位论文(南京: 南京航空航天大学)

    PanY 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [3]

    张向洪 2014 博士学位论文 (南京: 南京航空航天大学)

    Zhang X H 2014 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Palmer G 1993 J. Thermophys Heat Transfer 7 294Google Scholar

    [5]

    Barmin A A, Kulikovskiy A G 1996 J. Comput. Phys. 126 77Google Scholar

    [6]

    Nagata Y, Otsu H, Yamada K 2012 43rd AIAA Plasmadynamics and Lasers Conference NewOrleans, Louisiana, USA, June 25−8, 2012 p2734

    [7]

    Otsu H 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p5049

    [8]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference SanDiego, California, USA, June 24−27, 2013 p3000

    [9]

    Takahashi T, Shimosawa Y, Masuda K, Fujino T 2015 46th AIAA Plasma dynamics and Lasers Conference Dallas, Texas, USA, June 22−26, 2015 p3365

    [10]

    Bisek N J, Poggie J 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2011 p897

    [11]

    Bisek N J, Boyd I D 2010 J. Spacecraft Rockets 47 816Google Scholar

    [12]

    Lee J, Huerta M, Zha G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2010 p229

    [13]

    Cristofolini A, Borghi C A, Neretti G 2012 18th AIAA/3 AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24−28, 2012 p5804

    [14]

    Cristofolini A, Borghi C A, Neretti G 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, USA June 25−28, 2012 p2730

    [15]

    李开, 柳军, 刘伟强 2017 物理学报 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [16]

    李开, 刘伟强 2016 物理学报 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [17]

    姚霄, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [18]

    何淼生, 杨文将, 郑小梅, 刘宇 2013 航空动力学报 28 365

    He M S, Yang W J, Zheng X M, Liu Y 2013 J. Aerosp. Power 28 365

    [19]

    陈刚, 张劲柏, 李椿萱 2010 北京航空航天大学学报 36 135

    Chen G, Zhang J B, Li C X 2010 J. BUAA 36 135

    [20]

    孙晓辉 2013 博士学位论文(南京: 南京理工大学)

    Sun X H 2008 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [21]

    Poggie J, Gaitonde D 2002 Phys. Fluids 14 1720Google Scholar

    [22]

    Fujino T, Kondo S, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4248

    [23]

    Khan O U, Hoffmann K A, Dietiker J F 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA June 25−28, 2007 p4374

    [24]

    MacCormack R W 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 7−10, 2008 p1070

    [25]

    Kim M K 2009 Ph. D. Dissertation (Michigan: University of Michigan)

    [26]

    Bocharov A N 2010 High Temp. 48 483

    [27]

    Yoshino T, Fujino T, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4249

    [28]

    李开, 刘伟强 2016 国防科技大学学报 38 25Google Scholar

    Li K, Liu W Q 2016 J. NUDT 38 25Google Scholar

    [29]

    郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第1−38页

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) pp1−38 (in Chinese)

    [30]

    MacCormack R 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 10−13, 2005 p0559

    [31]

    Khan O U, Hoffmann K A, Dietiker J F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 9−12, 2006 p966

    [32]

    黄富来, 黄护林 2009 航空学报 30 1834Google Scholar

    Huang F L, Huang H L 2009 Acta Aeronaut. Astronaut. Sin. 30 1834Google Scholar

    [33]

    Maccormack R W 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p4780

    [34]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030

    [35]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [36]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

  • 图 1  流场中电导率和环形感应电流分布[34] (a)电导率; (b)电流密度

    Figure 1.  Distribution of electronic conductivity and annular electric current: (a) Conductivity; (b) current.

    图 2  不同位置的磁感应强度 (a) $r = 1.0\; {\rm{m}}$; (b) $x = 50.0 \;{\rm{m}}$

    Figure 2.  Magnetic induction intensity in different locations: (a) $r = 1.0 \;{\rm{m}}$; (b) $x = 50.0 \;{\rm{m}}$

    图 3  外加磁场 (a)本文BXF; (b)文献BXF; (c)本文BYF; (d)文献BYF

    Figure 3.  Externally applied magnetic field: (a) BXF of this paper; (b) BXF[33]; (c) BYF of this paper; (d) BYF[33].

    图 4  感应磁场 (a)本文BX; (b)文献BX; (c)本文BY; (d)文献BY

    Figure 4.  Induced magnetic field: (a) BX of this paper; (b) BX[33]; (c) BY of this paper; (d) BY[33].

    图 5  不同方法计算的流场压力分布 (a)文献低磁雷诺数MHD方法; (b)文献全MHD方法; (c)本文低磁雷诺数MHD方法; (b)本文修正方法

    Figure 5.  Distribution of pressure in the flow computed by different method: (a) Low Rem method[33]; (b) full MHD method[33]; (c) low Rem method of this paper; (d)improved method of this paper.

    图 6  采用电导率模型M6计算的流场电导率分布 (a)全场云图; (b)驻点线参数分布

    Figure 6.  Distribution of electronic conductivity using M6: (a) Full contour map; (b) parameters along stagnation line.

    图 7  修正方法计算的钝锥RAM-C感应磁场 (a) ${B_x}$分量; (b) ${B_y}$分量

    Figure 7.  Induced magnetic field of RAM-C using improved method: (a) Component ${B_x}$; (b) component ${B_y}$.

    图 8  钝锥RAM-C外加磁场和修正方法计算的全磁场分布 (a)全磁场${B_x}$分量; (b)全磁场${B_y}$分量; (c)外加磁场${B_x}$分量; (b)外加磁场${B_y}$分量

    Figure 8.  Total magnetic field computed using improved method and externally applied magnetic field of RAM-C: (a) Total ${B_x}$; (b) total ${B_y}$; (c) externally ${B_x}$; (c) externally ${B_y}$.

    图 9  修正方法和一般低磁雷诺数MHD方法计算得到的热流分布比较

    Figure 9.  Heat flux computed using Low Rem method or improvbed method.

    图 10  采用不同修正方法计算得到的热流和残差收敛曲线 (a)热流; (b)残差

    Figure 10.  Heat flux and residual error computed using different modified method: (a) Heat flux; (b) residual error.

    表 1  钝锥RAM-C阻力系数

    Table 1.  Drag coefficient of RAM-C.

    计算方法或条件总阻力系数增大比例
    No Mag.0.292
    一般低$R{e_{\rm{m}}}$方法0.991239%
    修正方法0.980234%
    DownLoad: CSV
  • [1]

    田正雨 2008 博士学位论文 (长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [2]

    潘勇 2007 博士学位论文(南京: 南京航空航天大学)

    PanY 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [3]

    张向洪 2014 博士学位论文 (南京: 南京航空航天大学)

    Zhang X H 2014 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Palmer G 1993 J. Thermophys Heat Transfer 7 294Google Scholar

    [5]

    Barmin A A, Kulikovskiy A G 1996 J. Comput. Phys. 126 77Google Scholar

    [6]

    Nagata Y, Otsu H, Yamada K 2012 43rd AIAA Plasmadynamics and Lasers Conference NewOrleans, Louisiana, USA, June 25−8, 2012 p2734

    [7]

    Otsu H 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p5049

    [8]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference SanDiego, California, USA, June 24−27, 2013 p3000

    [9]

    Takahashi T, Shimosawa Y, Masuda K, Fujino T 2015 46th AIAA Plasma dynamics and Lasers Conference Dallas, Texas, USA, June 22−26, 2015 p3365

    [10]

    Bisek N J, Poggie J 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2011 p897

    [11]

    Bisek N J, Boyd I D 2010 J. Spacecraft Rockets 47 816Google Scholar

    [12]

    Lee J, Huerta M, Zha G 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, USA, January 4−7, 2010 p229

    [13]

    Cristofolini A, Borghi C A, Neretti G 2012 18th AIAA/3 AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24−28, 2012 p5804

    [14]

    Cristofolini A, Borghi C A, Neretti G 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, USA June 25−28, 2012 p2730

    [15]

    李开, 柳军, 刘伟强 2017 物理学报 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [16]

    李开, 刘伟强 2016 物理学报 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [17]

    姚霄, 刘伟强, 谭建国 2018 物理学报 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [18]

    何淼生, 杨文将, 郑小梅, 刘宇 2013 航空动力学报 28 365

    He M S, Yang W J, Zheng X M, Liu Y 2013 J. Aerosp. Power 28 365

    [19]

    陈刚, 张劲柏, 李椿萱 2010 北京航空航天大学学报 36 135

    Chen G, Zhang J B, Li C X 2010 J. BUAA 36 135

    [20]

    孙晓辉 2013 博士学位论文(南京: 南京理工大学)

    Sun X H 2008 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

    [21]

    Poggie J, Gaitonde D 2002 Phys. Fluids 14 1720Google Scholar

    [22]

    Fujino T, Kondo S, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4248

    [23]

    Khan O U, Hoffmann K A, Dietiker J F 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA June 25−28, 2007 p4374

    [24]

    MacCormack R W 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 7−10, 2008 p1070

    [25]

    Kim M K 2009 Ph. D. Dissertation (Michigan: University of Michigan)

    [26]

    Bocharov A N 2010 High Temp. 48 483

    [27]

    Yoshino T, Fujino T, Ishikawa M 2007 38th AIAA Plasmadynamics and Lasers Conference Miami, Florida, USA, June 25−28, 2007 p4249

    [28]

    李开, 刘伟强 2016 国防科技大学学报 38 25Google Scholar

    Li K, Liu W Q 2016 J. NUDT 38 25Google Scholar

    [29]

    郭硕鸿 1997 电动力学 (北京: 高等教育出版社) 第1−38页

    Guo S H 1997 Electrodynamics (Beijing: Higher Education Press) pp1−38 (in Chinese)

    [30]

    MacCormack R 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 10−13, 2005 p0559

    [31]

    Khan O U, Hoffmann K A, Dietiker J F 2006 44th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, USA, January 9−12, 2006 p966

    [32]

    黄富来, 黄护林 2009 航空学报 30 1834Google Scholar

    Huang F L, Huang H L 2009 Acta Aeronaut. Astronaut. Sin. 30 1834Google Scholar

    [33]

    Maccormack R W 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario, Canada, June 6−9, 2005 p4780

    [34]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030

    [35]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009

    [36]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 物理学报 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

  • [1] Luo Shi-Chao, Wu Li-Yin, Hu Shou-Chao, Gong Hong-Ming, Lü Ming-Lei, Kong Xiao-Ping. Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field. Acta Physica Sinica, 2025, 74(2): 024701. doi: 10.7498/aps.74.20241307
    [2] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [3] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [4] Liu Ying, Chen Zhi-Hua, Zheng Chun. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid. Acta Physica Sinica, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [5] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [6] Dong Guo-Dan, Zhang Huan-Hao, Lin Zhen-Ya, Qin Jian-Hua, Chen Zhi-Hua, Guo Ze-Qing, Sha Sha. Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field. Acta Physica Sinica, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [7] Yang Xiong, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Three-dimensional direct numerical simulation of helicon discharge. Acta Physica Sinica, 2017, 66(2): 025201. doi: 10.7498/aps.66.025201
    [8] Cheng Yu-Guo, Cheng Mou-Sen, Wang Mo-Ge, Li Xiao-Kang. Numerical study on the effects of magnetic field on helicon plasma waves and energy absorption. Acta Physica Sinica, 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] Liu Hui-Ping, Zou Xiu, Zou Bin-Yan, Qiu Ming-Hui. Bohm criterion for an electronegative magnetized plasma sheath. Acta Physica Sinica, 2012, 61(3): 035201. doi: 10.7498/aps.61.035201
    [10] Wang Peng, Tian Xiu-Bo, Wang Zhi-Jian, Gong Chun-Zhi, Yang Shi-Qin. Numerical simulation of plasma immersion ion implantation for cubic target with finite length using three-dimensional particle-in-cell model. Acta Physica Sinica, 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [11] Du Hong-Liang, He Li-Ming, Lan Yu-Dan, Wang Feng. Influence of reduced electric field on the evolvement characteristics of plasma under conditions of N2/O2 discharge. Acta Physica Sinica, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [12] Ouyang Jian-Ming, Shao Fu-Qiu, Zou De-Bin. Numerical simulation of negative oxygen ion generation and temporal evolution in atmospheric plasma. Acta Physica Sinica, 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [13] Lan Yu-Dan, He Li-Ming, Ding Wei, Wang Feng. Evolution of H2/O2 mixture plasma under different initial temperatures. Acta Physica Sinica, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [14] Yang Juan, Shi Feng, Yang Tie-Lian, Meng Zhi-Qiang. Numerical simulation on the plasma field within discharge chamber of electron cyclotron resonance ion thruster. Acta Physica Sinica, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [15] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [16] Ouyang Jian-Ming, Shao Fu-Qiu, Lin Ming-Dong. Numerical simulation of ozone generation in oxygenic plasmas. Acta Physica Sinica, 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [17] Zhao Guo-Wei, Wang Zhi-Jiang, Xu Yue-Min, Liang Zhi-Wei, Xu Jie. Numerical simulation of plasma nonlinear phenomena excited by radio-frequency wave using FDTD method. Acta Physica Sinica, 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [18] Zhang Ting, Ding Bo-Jiang. Simulation of effect of atomic process on poloidal CXRS measurement. Acta Physica Sinica, 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
    [19] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] Wang Yan-Hui, Wang De-Zhen. Numerical simulation of dielectric-barrier-controlled glow discharge at atmosphe ric pressure. Acta Physica Sinica, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
Metrics
  • Abstract views:  6158
  • PDF Downloads:  54
  • Cited By: 0
Publishing process
  • Received Date:  14 January 2020
  • Accepted Date:  25 March 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回