Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecule-like structural units in silicate-glass-forming oxides

Wan Fa-Qi Ma Yan-Ping Dong Dan-Dan Ding Wan-Yu Jiang Hong Dong Chuang He Jian-Xiong

Citation:

Molecule-like structural units in silicate-glass-forming oxides

Wan Fa-Qi, Ma Yan-Ping, Dong Dan-Dan, Ding Wan-Yu, Jiang Hong, Dong Chuang, He Jian-Xiong
PDF
HTML
Get Citation
  • Silica glasses are composed of multi-oxides, apart from the major component silica. Though it is a general practice in the industries to prepare glasses at specific oxide ratios, the composition rule is largely missing, complicated by the implication of multi-oxides. Necessarily, their interpretation is rooted in chemical units, on which the specific compositions depend. However, in silica glasses the inter-atomic bonding network is continuous and there is no weak bonds, like the inter-molecular ones in molecular compounds, to define molecular entities that carry the chemical information of the materials. As the first stage towards understanding the composition rule, the present paper introduces a new method, so-called the cluster-plus-glue-atom model, to unveil the molecule-like structural units of the glass-relevant oxides. It is pointed out that their respective contributions to the construction of glass networks originate from their characteristic cluster structures, and from which molecule-like structural units are proposed that represent the smallest structural units of these oxides. Oxides participating in the glass network formation mainly present triangular or tetrahedral clusters which are required for a three-dimensional glassy network. For example, the basic network former SiO2 is formulated as [Si-O4]Si and contains 32 valence electrons. The intermediate oxides are characterized by the simultaneous formation of both octahedra and tetrahedra. The network modifiers present mainly cubes and octahedra. It is confirmed that the molecule-like structural units of the glass-formation oxides all meet octet rule (that is, the total number of valence electrons contained in each structural unit is an integer multiple of 8), just like common molecules. The proposed concept of molecular structural units sheds a new light on understanding the composition rule of silicate glasses and can eventually solve the long-standing problem of composition design of silica glasses.
      Corresponding author: Ma Yan-Ping, myp@hainanu.edu.cn ; Jiang Hong, jhong63908889@sina.com
    [1]

    王建成 2015 中国工业评论 0 4

    Wang J C 2015 China Industry Review 0 4

    [2]

    马艳平 2019 博士学位论文 (大连: 大连理工大学)

    Ma Y P 2019 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [3]

    Ma Y P, Dong D D, Wu A M, Dong C 2018 Inorg. Chem. 57 710Google Scholar

    [4]

    Nuernberg F, Kuehn B, Rollmann K Metrology of Fused Silica Laser-Induced Damage in Optical Materials Boulder, Colorado, United States, September 25 2016, p10014

    [5]

    Salmon P S 2002 Nat. Mater. 1 7Google Scholar

    [6]

    Elliot S R 1984 Physics of Amorphous Materials (London: Longman) pp20–27

    [7]

    Scholze H 1992 Appl. Opt. 31 31

    [8]

    Dong C, Wang Z J, Zhang S, Wang Y M 2020 Int. Mater. Rev. 65 286Google Scholar

    [9]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Mater 54 293Google Scholar

    [10]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 Phys. D: Appl. Phys. 40 273Google Scholar

    [11]

    Han G, Qian J, Li F, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Peter Häusslerl 2011 Acta. Mater. 59 5917Google Scholar

    [12]

    Du J, We B, Melnik R, Yoshiyuki K 2014 Acta. Mater. 75 113Google Scholar

    [13]

    Chen J X, Wang Q, Wang Y M, Qiang J B, Dong C 2010 Phil. Mag. Lett. 90 683Google Scholar

    [14]

    Dong D D, Zhang S, Wang Z J, Dong C, Häusslerl P 2016 Mater. Des. 96 115Google Scholar

    [15]

    董丹丹 2017 博士学位论文 (大连: 大连理工大学)

    Dong D D 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [16]

    张爽 2019 博士学位论文 (大连: 大连理工大学)

    Zhang S 2019 Ph. D. Dissertation (Dalian: Dalian University of technology) (in Chinese)

    [17]

    Lewis G N 1916 J. Am. Chem. Soc. 38 762Google Scholar

    [18]

    Miracle D, Sanders W, Senkov O N 2003 Philos. Mag. 83 2409Google Scholar

    [19]

    Villars P, Calvert L D 1985 Pearson’s Handbook of Crystallographic Data For Intermetallic Phases (Ohio, USA: American Society for Metals) pp2579−2580

    [20]

    周艳艳, 张希艳 2014 玻璃化学) (北京: 化学工业出版社) 第220−225页

    Zhou Y Y, Zhang X Y 2014 Glass Chemistry (Beijing: Chemical Industry Press) pp220−225

    [21]

    田英良, 孙诗兵 2009 新编玻璃工艺学 (北京: 中国轻工业出版社) 第25—30页

    TianY L, Sun S B 2009 New Glass Technology (Version 1) (Beijing: China Light Industry Press) pp25–30

    [22]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Chong S J, Morkoç H 2005 Appl. Phys. 98 041301Google Scholar

    [23]

    余小红 2015 博士学位论文 (武汉: 中国地质大学)

    Yu X H 2015 Ph. D. Dissertation (Wuhan: China University of Geosciences) (in Chinese)

    [24]

    戴培赞, 戚凭, 姜富城, 鲁萌萌 2006 青岛大学学报 19 22

    Dai P Z, Qi P, Jiang F C, Lu M M 2006 Journal of Qingdao University 19 22

    [25]

    Hazen R M, Finger L W 1986 J. Appl. Phys. 59 372 8

    [26]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965Google Scholar

  • 图 1  水分子的电子结构[2]

    Figure 1.  Electron structure of water molecule[2].

    图 2  基于[Si-O4]四面体的鳞石英β-SiO2晶体结构[3]

    Figure 2.  Crystal structure of β-SiO2 using tetrahedral cluster [Si-O4][3].

    图 3  氧化硅玻璃的结构示意图, 显示了长程无序和近程有序(硅氧四面体)特征[4]

    Figure 3.  The amorphous structure of glassy silica (SiO2) in two dimensions[4]

    图 4  (a) 团簇加连接原子模型[11]; (b) 团簇的间距为r3

    Figure 4.  (a) Cluster-plus-glue-atom model[11]; (b) the inter-cluster distance is r3.

    图 5  (a) β-SiO2(SiO2结构, 空间群194)的主团簇[Si-O4]和[O-Si2], 大原子为O, 小原子为Si; (b)类分子结构单元[Si-O4]Si

    Figure 5.  (a)Principal cluster [Si-O4] and [O-Si2] in β-SiO2 structure (space group 194). Large and small spheres are O and Si atoms, respectively; (b) molecule-like structural unit[Si-O4]Si.

    图 6  氧化物的单胞结构, 大原子为O: (a) B2O3(P31); (b) B2O3(Cmc21); (c) GeO2(P41212); (d) P2O5(Pnma)

    Figure 6.  The cell structure of oxides, and large atoms are O: (a) B2O3(P31); (b) B2O3(Cmc21); (c) GeO2(P41212); (d) P2O5(Pnma).

    图 7  反萤石结构Li2O的团簇[Li-O4]与[O-Li8], 后者为主团簇. 大原子为O, 小原子为Li

    Figure 7.  Clusters in anti-fluorite Li2O, [Li-O4] and [O-Li8] (principal cluster). Large spheres represent O and small spheres represent Li.

    图 8  NaCl结构CaO的团簇[Ca-O6]与[O-Ca6], 前者为主团簇. 大原子为O, 小原子为Ca

    Figure 8.  Clusters in NaCl structure of Li2O, [Ca-O6] (principal cluster)and [O-Ca6]. Large spheres represent O and small spheres represent Li.

    图 9  α-Al2O3中的团簇: 四面体[O-Al4]与八面体[Al-O6](主团簇), 小原子为Al

    Figure 9.  Clusters in α-Al2O3 unit cell, including [O-Al4] and [Al-O6] (principal cluster). Small spheres represent Al.

    图 10  γ-Al2O3(Al2MgO4尖晶石结构)中的团簇, 含有两种四面体[O-Al4]和[Al-O4](主团簇)与一种八面体[Al-O6], 小原子为Al

    Figure 10.  Clusters in γ-Al2O3 (Al2MgO4 structure), including [O-Al4], [Al-O4] (principal cluster), and [Al-O6]. Small spheres represent Al.

    图 11  ZnO的单胞结构, 小原子为Zn (a) ZnO ($ F{\bar 4}3 m$); (b) ZnO (P63mc)

    Figure 11.  The cell structure of ZnO, and small spheres represent Ti: (a) ZnO ($ F{\bar 4}3 m$); (b) ZnO (P63mc).

    图 12  ZnO(NaCl结构)中的八面体团簇[Zn-O6]与[O-Zn6], 前者为主团簇. 小原子为Zn

    Figure 12.  Octahedral clusters [Zn-O6] (principal cluster) and [O-Zn6] in ZnO (NaCl structure). Small spheres represent Zn.

    图 13  TiO2的单胞结构, 小原子为Ti (a) TiO2(P42/mnm); (b) TiO2(I41/amd); (c) TiO2( Pbca); (d) TiO2 (P21/m)

    Figure 13.  The cell structure of TiO2, and small spheres represent are Ti: (a) TiO2(P42/mnm); (b) TiO2(I41/amd); (c) TiO2( Pbca); (d) TiO2 (P21/m)

    表 1  鳞石英(Tridymite)β-SiO2的晶体结构数据表[19]

    Table 1.  Crystal structure data of Tridymite β-SiO2[19].

    O2SiStructure type O2SiPearson symbol hP12Space group P63/mmcNo.194
    a = 0.5052(9) nmc = 0.827(2) nmγ = 120°
    O12c$ {\bar 6}m2$x = 1/3y = 2/3z = 1/4occ. = 1
    Si4f3m.x = 1/3y = 2/3z = 0.0620occ. = 1
    O26g.2/mx = 1/2y = 0z = 0occ. = 1
    DownLoad: CSV

    表 2  硅酸盐玻璃相关氧化物的类分子结构单元, 分为中心为阳离子和阴离子O两种; 依托于主团簇的类分子结构单元用黑体标出

    Table 2.  Molecule-like structural units of glass-relevant oxides. Molecule-like structural unit, based on principal clusters, are bolded.

    ClassificationOxide (space group)Cationic structural unit (e/u)Anion structural unit (e/u)
    Network formationβ-SiO2 (P63/mmc)[Si-O4]Si = 2{SiO2} (32)[O-Si2]O3= 2{SiO2} (32)
    B2O3 (P31)[B-O3]B = {B2O3} (24)[O-B2]O2 = {B2O3} (24)
    B2O3 (Cmc21)[B-O4]B3O2 = 2{B2O3} (48)[O-B2]O2 = {B2O3} (24)
    [O-B3]O5B1 = 2{B2O3} (48)
    GeO2 (P41212)[Ge-O4]Ge = 2{GeO2} (32)[O-Ge2]O3 = 2{GeO2} (32)
    P2O5 (Pnma)[P-O4]P1O1 = {P2O5} (40)[O-P2]O4 = {P2O5} (40)
    [O-P1]P1O4 = {P2O5} (40)
    Network outside body(Li, Na, K)2O
    (anti-fluorite$ Fm{\bar 3}m$)
    [(Li, Na, K)-O4](Li, Na, K)7 =
    4{(Li, Na, K)O2} (32)
    [O-(Li, Na, K)8]O3 =
    4{(Li, Na, K)O2} (32)
    (Mg, Ca, Ba)O
    (Halite, $ Fm{\bar 3}m$)
    [(Mg, Ca, Ba)-O6](Mg, Ca, Ba)5 =
    6{(Mg, Ca, Ba)O} (48)
    [O-(Mg, Ca, Ba)6]O5 =
    4{(Mg, Ca, Ba)O} (48)
    ZrO2 (rutile, P42/mnm)[Zr-O6]Zr2 = 3{ZrO2} (48)[O-Zr3]O5 = 3{ZrO2} (48)
    Network intermediate(Be, Zn)O
    (sphalerite, P43m)
    [(Be, Zn)-O4](Be, Zn)3 = 4{(Be, Zn)O} (32)[O-(Be, Zn)4]O3 = 4{(Be, Zn)O} (32)
    (Be, Zn)O
    (Wurtzite, P63mc)
    [Zn-O4]Zn3 = 4{ZnO} (32)[O-Zn4]O3 = 4{ZnO} (32)
    (Be, Zn)O
    (Halite, $ Fm{\bar 3}m$)
    [Zn-O6]Zn5 = 6{ZnO} (48)[O-Zn6]O5 = 6{ZnO} (48)
    α-Al2O3 ($ R{\bar 3}c$)[Al-O6]Al3 = 2{Al2O3} (48)[O-Al4]O5 = 2{Al2O3} (48)
    γ-Al2O3 (Spinel, $ Fd{\bar 3}m$)[Al-O4]O2Al3 = 2{Al2O3} (48)[O-Al4]O5 = 2{Al2O3} (48)
    [Al-O6]Al3 = 2{Al2O3} (48)
    Ga2O3 (α-Al2O3, $ R{\bar 3}c$)[Ga-O6]Ga3 = 2{Ga2O3} (48)[O-Ga4]O5 = 2{Ga2O3} (48)
    Ga2O3 (Spinel, $ Fd{\bar 3}m$)[Ga-O4]O2Ga3 = 2{Ga2O3} (48)[O-Ga4]O5 = 2{Ga2O3} (48)
    [Ga-O6]Ga3 = 2{Ga2O3} (48)
    Fe2O3 (α-Al2O3, $ R{\bar 3}c$)[Fe-O6]Fe3 = 2{Fe2O3} (48)[O-Fe4]O5 = 2{Fe2O3} (48)
    Fe3O4 (Spinel, $ Fd{\bar 3}m$)[Fe-O4]Fe2 = {Fe3O4} (32)[O-Fe4]O7Fe2 = 2{Fe3O4} (64)
    [Fe-O6]Fe5O2 = 2{Fe3O4} (64)
    TiO2 (Rutile, P42/mnm)[Ti-O6]Ti2 = 3{TiO2} (48)[O-Ti3]O5 = 3{TiO2} (48)
    TiO2 (Anatase, I41/amd)[Ti-O6]Ti2 = 3{TiO2} (48)[O-Ti3]O5 = 3{TiO2} (48)
    TiO2 (Brookite, Pbca)[Ti-O6]Ti2 = 3{TiO2} (48)[O-Ti3]O5 = 3{TiO2} (48)
    TiO2 (P21/m)[Ti-O4]Ti = 2{TiO2} (32)[O-Ti2]O3 = 2{TiO2} (32)
    [Ti-O3]TiO = 2{TiO2} (32)[O-Ti]O3Ti = 2{TiO2} (32)
    DownLoad: CSV
  • [1]

    王建成 2015 中国工业评论 0 4

    Wang J C 2015 China Industry Review 0 4

    [2]

    马艳平 2019 博士学位论文 (大连: 大连理工大学)

    Ma Y P 2019 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [3]

    Ma Y P, Dong D D, Wu A M, Dong C 2018 Inorg. Chem. 57 710Google Scholar

    [4]

    Nuernberg F, Kuehn B, Rollmann K Metrology of Fused Silica Laser-Induced Damage in Optical Materials Boulder, Colorado, United States, September 25 2016, p10014

    [5]

    Salmon P S 2002 Nat. Mater. 1 7Google Scholar

    [6]

    Elliot S R 1984 Physics of Amorphous Materials (London: Longman) pp20–27

    [7]

    Scholze H 1992 Appl. Opt. 31 31

    [8]

    Dong C, Wang Z J, Zhang S, Wang Y M 2020 Int. Mater. Rev. 65 286Google Scholar

    [9]

    董闯, 董丹丹, 王清 2018 金属学报 54 293Google Scholar

    Dong C, Dong D D, Wang Q 2018 Acta Mater 54 293Google Scholar

    [10]

    Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H 2007 Phys. D: Appl. Phys. 40 273Google Scholar

    [11]

    Han G, Qian J, Li F, Yuan L, Quan S G, Wang Q, Wang Y M, Dong C, Peter Häusslerl 2011 Acta. Mater. 59 5917Google Scholar

    [12]

    Du J, We B, Melnik R, Yoshiyuki K 2014 Acta. Mater. 75 113Google Scholar

    [13]

    Chen J X, Wang Q, Wang Y M, Qiang J B, Dong C 2010 Phil. Mag. Lett. 90 683Google Scholar

    [14]

    Dong D D, Zhang S, Wang Z J, Dong C, Häusslerl P 2016 Mater. Des. 96 115Google Scholar

    [15]

    董丹丹 2017 博士学位论文 (大连: 大连理工大学)

    Dong D D 2017 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)

    [16]

    张爽 2019 博士学位论文 (大连: 大连理工大学)

    Zhang S 2019 Ph. D. Dissertation (Dalian: Dalian University of technology) (in Chinese)

    [17]

    Lewis G N 1916 J. Am. Chem. Soc. 38 762Google Scholar

    [18]

    Miracle D, Sanders W, Senkov O N 2003 Philos. Mag. 83 2409Google Scholar

    [19]

    Villars P, Calvert L D 1985 Pearson’s Handbook of Crystallographic Data For Intermetallic Phases (Ohio, USA: American Society for Metals) pp2579−2580

    [20]

    周艳艳, 张希艳 2014 玻璃化学) (北京: 化学工业出版社) 第220−225页

    Zhou Y Y, Zhang X Y 2014 Glass Chemistry (Beijing: Chemical Industry Press) pp220−225

    [21]

    田英良, 孙诗兵 2009 新编玻璃工艺学 (北京: 中国轻工业出版社) 第25—30页

    TianY L, Sun S B 2009 New Glass Technology (Version 1) (Beijing: China Light Industry Press) pp25–30

    [22]

    Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Chong S J, Morkoç H 2005 Appl. Phys. 98 041301Google Scholar

    [23]

    余小红 2015 博士学位论文 (武汉: 中国地质大学)

    Yu X H 2015 Ph. D. Dissertation (Wuhan: China University of Geosciences) (in Chinese)

    [24]

    戴培赞, 戚凭, 姜富城, 鲁萌萌 2006 青岛大学学报 19 22

    Dai P Z, Qi P, Jiang F C, Lu M M 2006 Journal of Qingdao University 19 22

    [25]

    Hazen R M, Finger L W 1986 J. Appl. Phys. 59 372 8

    [26]

    Boettger J C, Wills J M 1996 Phys. Rev. B 54 8965Google Scholar

  • [1] Ran Feng, Liang Yan, Jiandi Zhang. Quasi-two-dimensional superconductivity at oxide heterostructures. Acta Physica Sinica, 2023, 72(9): 097401. doi: 10.7498/aps.72.20230044
    [2] Jiang Fu-Shi, Wang Wei-Hua, Li Hong-Ming, Wang Qing, Dong Chuang. First-principles calculations of Ni-Al-Cr alloys using cluster-plus-glue-atom model. Acta Physica Sinica, 2022, 71(20): 207101. doi: 10.7498/aps.71.20221036
    [3] Ma Qi-Hui, Zhang Yu, Wang Qing, Dong Hong-Gang, Dong Chuang. Cluster formulas of Co-Al-W-base superalloys. Acta Physica Sinica, 2019, 68(6): 062101. doi: 10.7498/aps.68.20181030
    [4] Liu Yi-Chun, Lin Ya, Wang Zhong-Qiang, Xu Hai-Yang. Oxide-based memristive neuromorphic synaptic devices. Acta Physica Sinica, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [5] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [6] Wang Tong, Hu Xiao-Gang, Wu Ai-Min, Lin Guo-Qiang, Yu Xue-Wen, Dong Chuang. Explanation of Cr-C eutectic points using the cluster-plus-glue-atom model. Acta Physica Sinica, 2017, 66(9): 092101. doi: 10.7498/aps.66.092101
    [7] Xiong Zhong-Long, Wu Yan, Jing Rui-Ping, Ma Chong, Long Wei-Hui, Zhang Chao-Jun, Cheng Yong-Jin. Performance of Yb-doped silicate glass with thermal bleaching. Acta Physica Sinica, 2016, 65(4): 044208. doi: 10.7498/aps.65.044208
    [8] Hong Hai-Lian, Dong Chuang, Wang Qing, Zhang Yu, Geng Yao-Xiang. Cluster-plus-glue-atom model of FCC solid solutions and composition explanation of typical industrial alloys. Acta Physica Sinica, 2016, 65(3): 036101. doi: 10.7498/aps.65.036101
    [9] Li Xiao-Na, Zheng Yue-Hong, Li Zhen, Wang Miao, Zhang Kun, Dong Chuang. High temperature oxidation resistance of cluster model designed alloys Cu-Cu12-[Mx/(12+x)Ni12/(12+x)]5 (M=Si, Cr, Cr+Fe). Acta Physica Sinica, 2014, 63(2): 028102. doi: 10.7498/aps.63.028102
    [10] Liu Min, Yu Hua, Zhang Pan, Zhang Ming, Liu Yan, Zhao Li-Juan. Effects of Al2O3 on micro-structure and crystallization of oxyfluoride glass. Acta Physica Sinica, 2012, 61(11): 118102. doi: 10.7498/aps.61.118102
    [11] Sun Yi, Wang Chun-Lei, Wang Hong-Chao, Su Wen-Bin, Liu Jian, Peng Hua, Mei Liang-Mo. Influence of sintering temperature on thermoelectric properties of La0.1Sr0.9TiO3 ceramics. Acta Physica Sinica, 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [12] Han Guang, Qiang Jian-Bing, Wang Qing, Wang Ying-Min, Xia Jun-Hai, Zhu Chun-Lei, Quan Shi-Guang, Dong Chuang. Electrochemical potential equilibrium of electrons in ideal metallic glasses based on the cluster-resonance model. Acta Physica Sinica, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [13] Hao Chuan-Pu, Wang Qing, Ma Ren-Tao, Wang Ying-Min, Qiang Jian-Bing, Dong Chuang. Cluster-plus-glue-atom model in bcc solid solution alloys. Acta Physica Sinica, 2011, 60(11): 116101. doi: 10.7498/aps.60.116101
    [14] Chen Jun, Meng Da-Qiao, Du Ji-Guang, Jiang Gang, Gao Tao, Zhu Zheng-He. Molecular structures and molecular spectra for plutonium oxides. Acta Physica Sinica, 2010, 59(3): 1658-1664. doi: 10.7498/aps.59.1658
    [15] Wang Xing-Jun, Dong Bin, Zhou Zhi-Ping. Phase transformation and photoluminescence properties of Er silicate films by sol-gel method. Acta Physica Sinica, 2010, 59(5): 3554-3557. doi: 10.7498/aps.59.3554
    [16] Li Shan-Feng, Zhang Qing-Yu. Absorption and photoluminescence properties Er/Yb co-doped soda-silicate glasses. Acta Physica Sinica, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [17] Meng Jie, Zhao Li-Juan, Yu Hua, Tang Li-Qin, Liang Qin, Yu Xuan-Yi, Tang Bai-Quan, Su Jing, Xu Jing-Jun. Luminescent properties in Er-Yb-doped oxyfluoride glass ceramics with a nanocrystal line structure. Acta Physica Sinica, 2005, 54(3): 1442-1446. doi: 10.7498/aps.54.1442
    [18] Wu Yong-Quan, Jiang Guo-Chang, You Jing-Lin, Hou Huai-Yu, Chen Hui. Raman scattering coefficients of symmetrical stretching modes of microstructural units in sodium silicate melts. Acta Physica Sinica, 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [19] Zeng Hui-Dan, Qu Shi-Liang, Jiang Xiong-Wei, Qiu Jian-Rong, Zhu Cong-Shan, Gan F u-Xi. A study on the photo-induced crystallization properties in Au+-doped silicate glasses. Acta Physica Sinica, 2003, 52(10): 2525-2529. doi: 10.7498/aps.52.2525
    [20] LIAN GUI-JUN, LI MEI-YA, KANG JIN-FENG, GUO JIAN-DONG, SUN YUN-FENG, XIONG GUANG-CHENG. EPITAXIAL GROWTH OF PEROVSKITE OXIDE THIN FILMS. Acta Physica Sinica, 1999, 48(10): 1917-1922. doi: 10.7498/aps.48.1917
Metrics
  • Abstract views:  17367
  • PDF Downloads:  199
  • Cited By: 0
Publishing process
  • Received Date:  15 December 2019
  • Accepted Date:  13 May 2020
  • Available Online:  09 May 2020
  • Published Online:  05 July 2020

/

返回文章
返回