Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field

Dong Guo-Dan Zhang Huan-Hao Lin Zhen-Ya Qin Jian-Hua Chen Zhi-Hua Guo Ze-Qing Sha Sha

Citation:

Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field

Dong Guo-Dan, Zhang Huan-Hao, Lin Zhen-Ya, Qin Jian-Hua, Chen Zhi-Hua, Guo Ze-Qing, Sha Sha
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Magnetohydrodynamic (MHD) equations are solved by using the CTU+CT (corner transport upwind + constrained transport) algorithm which guarantees the divergence-free constraint on the magnetic field. The interactions between shock wave and heavy or light triangular cylinder are investigated in detail in the cases with and without magnetic field. In the cases of hydrodynamic (B=0 T) and MHD (B=0.01 T), the numerical results indicate that heavy and light triangular cylinders have quite different wave patterns and jet structures after being impacted by a planar incident shock wave. Specifically, a regular refraction and downstream R22 jet are formed in the heavy case, whereas an irregular refraction and upstream air jet are generated in the light case. In the hydrodynamic case, the Richtmyer-Meshkov (R-M) instability and Kelvin-Helmholtz (K-H) instability are induced by the incident shock wave. Hereafter, both heavy and light density interfaces begin to roll up with a series of interfacial vortex sequences. In addition, a main vortex ring is formed in the heavy case, while a vortex dipole passing through the downstream interface is generated in the light case. In the MHD case, both heavy and light density interfaces remain smooth and interfacial vortex sequences vanish. Furthermore, the main vortex ring formed in the heavy cases and the vortex dipole generated in the light cases disappear. Moreover, in the presence of a magnetic field, a detailed investigation demonstrates that Lorentz forces give rise to the transport of baroclinic vorticities to the Alfvn waves. As a consequence, the deposition of interfacial vorticities decreases and the rolling-up of interfaces is suppressed. In the end, the vorticities are transformed into two vortex sheets travelling away from the density interfaces, and the R-M instability and K-H instability are well controlled. The quantitative investigations reveal that for both heavy and light triangular cylinders, magnetic field can accelerate the upstream interface and decelerate the downstream interface, especially for the light triangular cylinder.
      Corresponding author: Dong Guo-Dan, Dongguodan9@163.com;zhanghuanhao@njust.edu.cn ; Zhang Huan-Hao, Dongguodan9@163.com;zhanghuanhao@njust.edu.cn
    • Funds: Project supported by the Young Scientists Fund of National Natural Science Foundation of China (Grant Nos. 11502117, 11702005).
    [1]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [2]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 339

    [3]

    Sano T, Nishihara K, Matsuoka C, Inoue T 2012 ApJ. 758 12

    [4]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [5]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [6]

    Rudinger G, Somers L M 1960 J. Fluid Mech. 7 161

    [7]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41

    [8]

    Layes G, Jourdan G, Houas L 2003 Phys. Rev. Lett. 91 174502

    [9]

    Layes G, Jourdan G, Houas L 2009 Phys. Fluids 21 074102

    [10]

    Ranjan D, Oakley J, Bonazza R 2011 Annu Rev. Fluid Mech. 43 117

    [11]

    Ranjan D, Niederhaus J H J, Oakley J G, Anderson M H 2008 Phys. Fluids 20 24

    [12]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800

    [13]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366

    [14]

    Dong P, Si T, Zhai Z G 2016 J. Fluid Mech. 802 186

    [15]

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701 (in Chinese)[沙莎, 陈志华, 薛大文 2013 物理学报 62 144701]

    [16]

    Sha S, Chen Z H, Xue D W, Zhang H 2014 Acta Phys. Sin. 63 085205 (in Chinese)[沙莎, 陈志华, 薛大文, 张辉 2014 物理学报 63 085205]

    [17]

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201 (in Chinese)[沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201]

    [18]

    Mininni P D 2010 Annu. Rev. Fluid Mech. 43 377

    [19]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese)[陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 物理学报 61 075207]

    [20]

    Li Y, Luo X S 2014 Acta Phys. Sin. 63 085230 (in Chinese)[李源, 罗喜胜 2014 物理学报 63 085230]

    [21]

    Wu C C 2000 J. Geophys. Res-Space 105 7533

    [22]

    Samtaney R 2003 Phys. Fluids 15 L53

    [23]

    Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002

    [24]

    Wheatley V, Samtaney R, Pullin D I 2009 Phys. Fluids 21 082102

    [25]

    Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 238

    [26]

    Sano T, Inoue T, Nishihara K 2013 Phys. Rev. Lett. 111 20500

    [27]

    Cao J T, Wu Z W, Ren H J, Dong L 2008 Phys. Plasmas 15 445

    [28]

    Mostert W, Wheatley V, Samtaney R, Pullin D I 2015 Phys. Fluids 27 104102

    [29]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21

    [30]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explosion and Shock Waves 37 748 (in Chinese)[林震亚, 张焕好, 陈志华, 刘迎 2017 爆炸与冲击 37 748]

    [31]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123

    [32]

    Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17

    [33]

    Qin J H, Jiang X H, Dong G D, Guo Z Q, Chen Z H 2018 Fluid Dyn. Res. 50 045508

    [34]

    Henderson L F, Colella P, Puckett E G 2006 J. Fluid Mech. 224 1

    [35]

    Landau L D, Lifshitz E M 1960 Electrodynamics of Continuous Media (Oxford: Pergamon) pp241-243

  • [1]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [2]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 339

    [3]

    Sano T, Nishihara K, Matsuoka C, Inoue T 2012 ApJ. 758 12

    [4]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [5]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [6]

    Rudinger G, Somers L M 1960 J. Fluid Mech. 7 161

    [7]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41

    [8]

    Layes G, Jourdan G, Houas L 2003 Phys. Rev. Lett. 91 174502

    [9]

    Layes G, Jourdan G, Houas L 2009 Phys. Fluids 21 074102

    [10]

    Ranjan D, Oakley J, Bonazza R 2011 Annu Rev. Fluid Mech. 43 117

    [11]

    Ranjan D, Niederhaus J H J, Oakley J G, Anderson M H 2008 Phys. Fluids 20 24

    [12]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800

    [13]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366

    [14]

    Dong P, Si T, Zhai Z G 2016 J. Fluid Mech. 802 186

    [15]

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701 (in Chinese)[沙莎, 陈志华, 薛大文 2013 物理学报 62 144701]

    [16]

    Sha S, Chen Z H, Xue D W, Zhang H 2014 Acta Phys. Sin. 63 085205 (in Chinese)[沙莎, 陈志华, 薛大文, 张辉 2014 物理学报 63 085205]

    [17]

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201 (in Chinese)[沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201]

    [18]

    Mininni P D 2010 Annu. Rev. Fluid Mech. 43 377

    [19]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese)[陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 物理学报 61 075207]

    [20]

    Li Y, Luo X S 2014 Acta Phys. Sin. 63 085230 (in Chinese)[李源, 罗喜胜 2014 物理学报 63 085230]

    [21]

    Wu C C 2000 J. Geophys. Res-Space 105 7533

    [22]

    Samtaney R 2003 Phys. Fluids 15 L53

    [23]

    Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002

    [24]

    Wheatley V, Samtaney R, Pullin D I 2009 Phys. Fluids 21 082102

    [25]

    Wheatley V, Samtaney R, Pullin D I, Gehre R M 2014 Phys. Fluids 26 238

    [26]

    Sano T, Inoue T, Nishihara K 2013 Phys. Rev. Lett. 111 20500

    [27]

    Cao J T, Wu Z W, Ren H J, Dong L 2008 Phys. Plasmas 15 445

    [28]

    Mostert W, Wheatley V, Samtaney R, Pullin D I 2015 Phys. Fluids 27 104102

    [29]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D. 31 21

    [30]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y 2017 Explosion and Shock Waves 37 748 (in Chinese)[林震亚, 张焕好, 陈志华, 刘迎 2017 爆炸与冲击 37 748]

    [31]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123

    [32]

    Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17

    [33]

    Qin J H, Jiang X H, Dong G D, Guo Z Q, Chen Z H 2018 Fluid Dyn. Res. 50 045508

    [34]

    Henderson L F, Colella P, Puckett E G 2006 J. Fluid Mech. 224 1

    [35]

    Landau L D, Lifshitz E M 1960 Electrodynamics of Continuous Media (Oxford: Pergamon) pp241-243

  • [1] LUO Shichao, WU Liyin, HU Shouchao, GONG Hongming, LYU Minglei, KONG Xiaoping. Analysis of wall catalytic effects on magnetohydrodynamic control of high-temperature non-quilibrium flow field. Acta Physica Sinica, 2025, 74(2): 024701. doi: 10.7498/aps.74.20241307
    [2] Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun. Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder. Acta Physica Sinica, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [3] Zhang Sheng-Bo, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Influence of different interface component distributions on Richtmyer-Meshkov instability. Acta Physica Sinica, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [4] Dang Zi-Han, Zheng Chun, Zhang Huan-Hao, Chen Zhi-Hua. Evolution mechanism of double-layer heavy gas column interface with sinusoidal disturbance induced by convergent shock wave. Acta Physica Sinica, 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [5] Luo Shi-Chao, Wu Li-Yin, Chang Yu. Mechanism analysis of magnetohydrodynamic control in hypersonic turbulent flow. Acta Physica Sinica, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [6] Fan Hai-Long, Chen Ming-Wen. Effect of magnetic field on stability in mushy layer during binary alloy solidification. Acta Physica Sinica, 2021, 70(6): 066401. doi: 10.7498/aps.70.20201748
    [7] Yuan Yong-Teng, Tu Shao-Yong, Yin Chuan-Sheng, Li Ji-Wei, Dai Zhen-Sheng, Yang Zheng-Hua, Hou Li-Fei, Zhan Xia-Yu, Yan Ji, Dong Yun-Song, Pu Yu-Dong, Zou Shi-Yang, Yang Jia-Min, Miao Wen-Yong. Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability. Acta Physica Sinica, 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [8] Ding Ming-Song, Fu Yang-Ao-Xiao, Gao Tie-Suo, Dong Wei-Zhong, Jiang Tao, Liu Qing-Zong. Influence of Hall effect on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [9] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [10] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [11] Liu Ying, Chen Zhi-Hua, Zheng Chun. Kelvin-Helmholtz instability in anisotropic viscous magnetized fluid. Acta Physica Sinica, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [12] Dong Guo-Dan, Guo Ze-Qing, Qin Jian-Hua, Zhang Huan-Hao, Jiang Xiao-Hai, Chen Zhi-Hua, Sha Sha. Numerical investigations of Richtmyer-Meshkov instability in different magnetic field configurations and the corresponding dynamic mode decomposition. Acta Physica Sinica, 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [13] Li Dong-Dong, Wang Ge, Zhang Bin. Flow and mixing in shock-accelerated elliptic helium gas cylinder process. Acta Physica Sinica, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [14] Li Jun-Tao, Sun Yu-Tao, Hu Xiao-Mian, Ren Yu-Xin. Effect of vortex/wall interaction on turbulent mixing in the Richtmyer-Meshkov instability induced by shocked V shape interface. Acta Physica Sinica, 2017, 66(23): 235201. doi: 10.7498/aps.66.235201
    [15] Li Jun-Tao, Sun Yu-Tao, Pan Jian-Hua, Ren Yu-Xin. Instability and turbulent mixing of shocked V shaped interface. Acta Physica Sinica, 2016, 65(24): 245202. doi: 10.7498/aps.65.245202
    [16] Sha Sha, Chen Zhi-Hua, Xue Da-Wen, Zhang Hui. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders. Acta Physica Sinica, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [17] Sha Sha, Chen Zhi-Hua, Xue Da-Wen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Acta Physica Sinica, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [18] Huo Xin-He, Wang Li-Feng, Tao Ye-Sheng, Li Ying-Jun. Bubble velocities in the nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in non-ideal fluids. Acta Physica Sinica, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [19] Tao Ye-Sheng, Wang Li-Feng, Ye Wen-Hua, Zhang Guang-Cai, Zhang Jian-Cheng, Li Ying-Jun. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Acta Physica Sinica, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [20] Wu Yi, Rong Ming-Zhe, Yang Fei, Wang Xiao-Hua, Ma Qiang, Wang Wei-Zong. Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma. Acta Physica Sinica, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
Metrics
  • Abstract views:  6733
  • PDF Downloads:  68
  • Cited By: 0
Publishing process
  • Received Date:  09 June 2018
  • Accepted Date:  11 July 2018
  • Published Online:  20 October 2019

/

返回文章
返回