Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability

Yuan Yong-Teng Tu Shao-Yong Yin Chuan-Sheng Li Ji-Wei Dai Zhen-Sheng Yang Zheng-Hua Hou Li-Fei Zhan Xia-Yu Yan Ji Dong Yun-Song Pu Yu-Dong Zou Shi-Yang Yang Jia-Min Miao Wen-Yong

Citation:

Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability

Yuan Yong-Teng, Tu Shao-Yong, Yin Chuan-Sheng, Li Ji-Wei, Dai Zhen-Sheng, Yang Zheng-Hua, Hou Li-Fei, Zhan Xia-Yu, Yan Ji, Dong Yun-Song, Pu Yu-Dong, Zou Shi-Yang, Yang Jia-Min, Miao Wen-Yong
PDF
HTML
Get Citation
  • Radiative shocks are ubiquitous in stellar environments and are characterized by high temperature plasma emitting a considerable fraction of their energy as radiation. Radiative shocks occur commonly in nature, especially in astronomical systems and inertial confinement fusion. The study of the effects of radiation on Richtmyer-Meshkov (RM) instability will improve our ability to understand and predict the evolution of RM instability under high energy density conditions.A few experiments have been performed to compare the radiative case with the non-radiative case in Rayleigh-Taylor (RT) instability, thereby studying how the radiative effects change the evolution of RT instability, but the interplay between RM instability and radiative shock has been studied rarely. This paper reports mainly the role of radiation in the changing of the RM instability. Two experiments are performed at Shenguang III prototype laser facility, the RM instability growth data are obtained by varying the laser intensity. The laser intensity for high-drive experiment is approximately 60% greater than that for low-drive experiment. The target consists of a multiple layer in the axial direction, in which the first layer is a 15μm-thick CH sample serving as an ablator, followed by a 10 μm-thick aluminum used as a shield layer to prevent the preheat effect. The next layer is a 350-μm-thick SiO2 foam, which is used as a material to produce a radiative shock. The last layer is the CH perturbed sample. There is a sinusoidal perturbation on the surface of CH sample which is adjacent to the SiO2 foam. The target is irradiated by four overlapping laser beams, and the laser beams produce a large pressure that drives a shock wave, whose velocity can be changed by varying the laser intensity, into the target package.In the experiments, shock-generated radiative fluxes first ablate the unstable interface which the shock has not passed through, then the shock transmits the unstable interface to produce the RM instability. The images of unstable interface are captured using side-on x-ray radiography, and the experimental results show that the RM growth is suppressed in the experiment for the higher laser intensity. Radiation hydrodynamic code Multi1D is used to evaluate the electron temperature, shock velocity, and electron density. The simulations show that the foam temperature in the high-drive case can reach 80 eV in the front of shock, this energy flows away from the shock front, generating a radiative precursor ahead of the shock. The radiative precursor velocity of 270 km/s is much larger than the shock velocity of 170 km/s, the radiative precursor arrives at the unstable interface before the shock and ablates the unstable interface, so the radiative flux changes the initial conditions of unstable interface. When the shock propagates through the unstable interface, the ablation increases the density gradient length scale and reduces the Atwood number of the unstable interface, so the RM growth is suppressed in the high-drive case because of the ablation of the radiative precursor.
      Corresponding author: Miao Wen-Yong, miaowenyong@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705179, 11905205) and the Science Challenge Project, China (Grant No. TZ2016005)
    [1]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [2]

    Remington B A, Drake R P, Ryntov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Trantham M R, Kuranz C C, Malamud G, et al. 2013 High Energy Density Phys. 9 303Google Scholar

    [5]

    Flaig M, Plewa T, Keiter P A, Drake R P, Grosskopf M, Kuranz C, Park H S 2014 High Energy Density Phys. 12 35Google Scholar

    [6]

    Li J W, Pei W B, He X T, Li J H, Zheng W D, Zhu S P, Kang W 2013 Phys. Plasmas 20 082707Google Scholar

    [7]

    Pak A, Divol L, Gregori G, et al. 2013 Phys. Plasmas 20 056315Google Scholar

    [8]

    Reighard A B, Drake R P, Dannenberg K K, et al. 2006 Phys. Plasmas 13 082901Google Scholar

    [9]

    Stehlé C, González M, Kozlva M, et al. 2010 Laser Part. Beams 28 253Google Scholar

    [10]

    Kuranz C C, Drake R P, Huntington C M, et al. 2013 High Energy Density Phys. 9 315Google Scholar

    [11]

    Michaut C, Vinci T, Boireau L, et al. 2007 Astrophys. Space Sci. 307 159Google Scholar

    [12]

    Chaulagain U, Stehlé C, Larour J, et al. 2015 High Energy Density Phys. 17 106Google Scholar

    [13]

    Cotelo M, Velarde P, Varga A G, Portillo D, Stehlé C, Chaulagain U, Kozlova M, Larour J, Suzuki-Vidal F 2015 High Energy Density Phys. 17 68Google Scholar

    [14]

    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar

    [15]

    Michel T, Albertazzi B, Mabey P, Rigon G, Lefevre F, Som L, Barroso P, Egashira S, Kumar R, Michaut C, Ota M, Ozaki N, Sakawa Y, Sano T, Falize E, Koenig M 2020 Astrophys. J. 25 888

    [16]

    Keiter P A, Drake R P, Perry T S, Robey H F, Remington B A, Iglesias C A, Wallace R J 2002 Phys. Rev. Lett. 89 165003Google Scholar

    [17]

    Nilsen J, Kritcher A L, Martin M E, Tipton R E, Whitley H D, Swift D C, Döppner T, Bachmann B L, Lazicki A E, Kostinski N B, Maddox B R, Collins G W, Glenzer S H, Falcone R W 2020 Matter Radiat. Extremes 5 018401Google Scholar

    [18]

    Huntington C M, Shimony A, Trantham M, et al. 2018 Phys. Plasmas 25 052118Google Scholar

    [19]

    Kuranz C C, Park H S, Huntington C M, et al. 2018 Nat. Commun. 9 1564Google Scholar

    [20]

    庄礼贤, 尹协远, 马晖扬 2009 流体力学(合肥: 中国科学技术大学出版社) 第268页

    Zhuang L X, Yin X Y, Ma H Y 2009 Fluid Mechanics (Hefei: University of Science and Technology of China Press) p268 (in Chinese)

    [21]

    Motl B J 2008 Ph. D. Dissertation (Wisconsin: University of Wisconsin- Madison)

    [22]

    Dimonte G, Frerking C E, Schneider M, Remington B 1995 Phys. Plasmas 3 614

    [23]

    张璐, 杨家敏 2012 物理学报 61 045203Google Scholar

    Zhang L, Yang J M 2012 Acta Phys. Sin. 61 045203Google Scholar

    [24]

    Martinez D A, Smalyuk V A, MacPhee A G, et al. 2017 Phys. Plasmas 24 102707Google Scholar

    [25]

    肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 物理学报 64 235203Google Scholar

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding L 2015 Acta Phys. Sin. 64 235203Google Scholar

    [26]

    蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆 2016 物理学报 65 075201Google Scholar

    Meng S J, Huang Z C, Ning J M, Hu Q Y, Ye F, Qin Y, Xu Z P, Xu R K 2016 Acta Phys. Sin. 65 075201Google Scholar

  • 图 1  激光驱动界面不稳定性研究主靶结构示意图

    Figure 1.  Schematic view of the hydrodynamic instability target driven by laser.

    图 2  两种泡沫材料中冲击波的运动轨迹

    Figure 2.  Shock trajectory in two foam materials.

    图 3  界面不稳定性研究主靶CT图像

    Figure 3.  Photo of the hydrodynamic instability target taken by CT.

    图 4  激光驱动界面不稳定性实验示意图

    Figure 4.  Schematic of the laser driven hydrodynamic instability experiment.

    图 5  激光功率密度1 × 1015 W/cm2条件下CHBr样品的RM不稳定性增长图像

    Figure 5.  RM growth image at a laser intensity of 1 × 1015 W/cm2.

    图 6  激光功率密度1.6 × 1015 W/cm2条件下CHBr样品的界面不稳定性增长图像

    Figure 6.  RM growth image at a laser intensity of 1.6 × 1015 W/cm2.

    图 7  激光功率密度1 × 1015 W/cm2条件下CHBr样品阴影区X轴方向光强分布

    Figure 7.  Horizontal lineouts of perturbation sample images at a laser intensity of 1.6 × 1015 W/cm2.

    图 8  激光功率密度1.6 × 1015 W/cm2条件下CHBr样品阴影区X轴方向光强分布

    Figure 8.  Horizontal lineouts of perturbation sample images at a laser intensity of 1 × 1015 W/cm2.

    图 9  模拟激光功率密度1.6 × 1015 W/cm2条件下各层物质运动及冲击波、辐射前驱波阵面

    Figure 9.  Simulated shock trajectory, radiative precursor trajectory and the movement of materials at a laser intensity of 1.6 × 1015 W/cm2.

    图 10  模拟SiO2泡沫和CHBr层电子温度变化

    Figure 10.  One-dimensional profiles of electron temperature of SiO2 foam and CHBr.

    图 11  模拟不同时刻SiO2泡沫中电子密度和电子温度的变化 (a) 0.9 ns; (b) 2.0 ns

    Figure 11.  Simulated one-dimensional profiles of electron temperature and electron density at different time: (a) 0.9 ns; (b) 2.0 ns.

    图 12  模拟激光功率密度1 × 1015 W/cm2条件下各层物质运动及冲击波、辐射前驱波阵面

    Figure 12.  Simulated shock trajectory, radiative precursor trajectory and the movement of materials at a laser intensity of 1 × 1015 W/cm2.

    图 13  模拟不同时刻SiO2泡沫中电子密度和电子温度的变化 (a) 1.2 ns; (b) 2.5 ns

    Figure 13.  Simulated electron density and electron temperature in SiO2 foam for different time: (a) 1.2 ns; (b) 2.5 ns.

    图 14  模拟激光功率密度1.6 × 1015 W/cm2条件下 (a) CHBr样品烧蚀速度, (b)界面处密度梯度标长

    Figure 14.  Simulated (a) ablation velocity and (b) density-gradient scale length on the surface at a laser intensity of 1.6 × 1015 W/cm2.

    图 15  模拟两种激光功率密度条件下界面处密度梯度标长变化

    Figure 15.  Simulated density-gradient scale length on the surface at the different laser intensity.

    图 16  模拟两种激光功率密度条件下扰动界面处的Atwood数变化

    Figure 16.  Simulated Atwood number on the surface at the different laser intensity.

    表 1  激光功率密度1 × 1015 W/cm2条件下激光参数统计

    Table 1.  Laser parameters at a laser intensity of 1 × 1015 W/cm2.

    发次号记录图像
    时刻/ns
    设计能
    量/J
    实际输出
    能量/J
    实际输出能量与
    设计能量偏差/%
    057520001931–3.45
    056620001983–0.85
    054820001988–0.60
    DownLoad: CSV

    表 2  激光功率密度1.6 × 1015 W/cm2条件下激光参数统计

    Table 2.  Laser parameters at a laser intensity of 1.6 × 1015 W/cm2.

    发次号记录图像
    时刻/ns
    设计能
    量/J
    实际输出
    能量/J
    实际输出能量与
    设计能量偏差/%
    061532003080–3.75
    055832002812–12.1
    DownLoad: CSV
  • [1]

    Remington B A, Drake R P, Takabe H, Arnett D 2000 Phys. Plasmas 7 1641Google Scholar

    [2]

    Remington B A, Drake R P, Ryntov D D 2006 Rev. Mod. Phys. 78 755Google Scholar

    [3]

    Kuranz C C, Park H S, Remington B A, et al. 2011 Astrophys. Space Sci. 336 207Google Scholar

    [4]

    Trantham M R, Kuranz C C, Malamud G, et al. 2013 High Energy Density Phys. 9 303Google Scholar

    [5]

    Flaig M, Plewa T, Keiter P A, Drake R P, Grosskopf M, Kuranz C, Park H S 2014 High Energy Density Phys. 12 35Google Scholar

    [6]

    Li J W, Pei W B, He X T, Li J H, Zheng W D, Zhu S P, Kang W 2013 Phys. Plasmas 20 082707Google Scholar

    [7]

    Pak A, Divol L, Gregori G, et al. 2013 Phys. Plasmas 20 056315Google Scholar

    [8]

    Reighard A B, Drake R P, Dannenberg K K, et al. 2006 Phys. Plasmas 13 082901Google Scholar

    [9]

    Stehlé C, González M, Kozlva M, et al. 2010 Laser Part. Beams 28 253Google Scholar

    [10]

    Kuranz C C, Drake R P, Huntington C M, et al. 2013 High Energy Density Phys. 9 315Google Scholar

    [11]

    Michaut C, Vinci T, Boireau L, et al. 2007 Astrophys. Space Sci. 307 159Google Scholar

    [12]

    Chaulagain U, Stehlé C, Larour J, et al. 2015 High Energy Density Phys. 17 106Google Scholar

    [13]

    Cotelo M, Velarde P, Varga A G, Portillo D, Stehlé C, Chaulagain U, Kozlova M, Larour J, Suzuki-Vidal F 2015 High Energy Density Phys. 17 68Google Scholar

    [14]

    Vinci T, Koenig M, Benuzzi-Mounaix A, Michaut C, Boireau L, Leygnac S, Bouquet S, Peyrusse O, Batani D 2006 Phys. Plasmas 13 010702Google Scholar

    [15]

    Michel T, Albertazzi B, Mabey P, Rigon G, Lefevre F, Som L, Barroso P, Egashira S, Kumar R, Michaut C, Ota M, Ozaki N, Sakawa Y, Sano T, Falize E, Koenig M 2020 Astrophys. J. 25 888

    [16]

    Keiter P A, Drake R P, Perry T S, Robey H F, Remington B A, Iglesias C A, Wallace R J 2002 Phys. Rev. Lett. 89 165003Google Scholar

    [17]

    Nilsen J, Kritcher A L, Martin M E, Tipton R E, Whitley H D, Swift D C, Döppner T, Bachmann B L, Lazicki A E, Kostinski N B, Maddox B R, Collins G W, Glenzer S H, Falcone R W 2020 Matter Radiat. Extremes 5 018401Google Scholar

    [18]

    Huntington C M, Shimony A, Trantham M, et al. 2018 Phys. Plasmas 25 052118Google Scholar

    [19]

    Kuranz C C, Park H S, Huntington C M, et al. 2018 Nat. Commun. 9 1564Google Scholar

    [20]

    庄礼贤, 尹协远, 马晖扬 2009 流体力学(合肥: 中国科学技术大学出版社) 第268页

    Zhuang L X, Yin X Y, Ma H Y 2009 Fluid Mechanics (Hefei: University of Science and Technology of China Press) p268 (in Chinese)

    [21]

    Motl B J 2008 Ph. D. Dissertation (Wisconsin: University of Wisconsin- Madison)

    [22]

    Dimonte G, Frerking C E, Schneider M, Remington B 1995 Phys. Plasmas 3 614

    [23]

    张璐, 杨家敏 2012 物理学报 61 045203Google Scholar

    Zhang L, Yang J M 2012 Acta Phys. Sin. 61 045203Google Scholar

    [24]

    Martinez D A, Smalyuk V A, MacPhee A G, et al. 2017 Phys. Plasmas 24 102707Google Scholar

    [25]

    肖德龙, 孙顺凯, 薛创, 张扬, 丁宁 2015 物理学报 64 235203Google Scholar

    Xiao D L, Sun S K, Xue C, Zhang Y, Ding L 2015 Acta Phys. Sin. 64 235203Google Scholar

    [26]

    蒙世坚, 黄展常, 甯家敏, 胡青元, 叶繁, 秦义, 许泽平, 徐荣昆 2016 物理学报 65 075201Google Scholar

    Meng S J, Huang Z C, Ning J M, Hu Q Y, Ye F, Qin Y, Xu Z P, Xu R K 2016 Acta Phys. Sin. 65 075201Google Scholar

  • [1] Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun. Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder. Acta Physica Sinica, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] Sun Bei-Bei, Ye Wen-Hua, Zhang Wei-Yan. Numerical simulation study on growth of Richtmyer-Meshkov-like instability of density perturbation and its coupling with unperturbed interfaces. Acta Physica Sinica, 2023, 72(19): 194701. doi: 10.7498/aps.72.20230928
    [3] Zhang Sheng-Bo, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Influence of different interface component distributions on Richtmyer-Meshkov instability. Acta Physica Sinica, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [4] Dang Zi-Han, Zheng Chun, Zhang Huan-Hao, Chen Zhi-Hua. Evolution mechanism of double-layer heavy gas column interface with sinusoidal disturbance induced by convergent shock wave. Acta Physica Sinica, 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [5] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [6] Dong Guo-Dan, Guo Ze-Qing, Qin Jian-Hua, Zhang Huan-Hao, Jiang Xiao-Hai, Chen Zhi-Hua, Sha Sha. Numerical investigations of Richtmyer-Meshkov instability in different magnetic field configurations and the corresponding dynamic mode decomposition. Acta Physica Sinica, 2019, 68(16): 165201. doi: 10.7498/aps.68.20190410
    [7] Li Dong-Dong, Wang Ge, Zhang Bin. Flow and mixing in shock-accelerated elliptic helium gas cylinder process. Acta Physica Sinica, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [8] Dong Guo-Dan, Zhang Huan-Hao, Lin Zhen-Ya, Qin Jian-Hua, Chen Zhi-Hua, Guo Ze-Qing, Sha Sha. Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field. Acta Physica Sinica, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [9] Zhao Kai-Ge, Xue Chuang, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Ding Yong-Kun, Zhang Wei-Yan, He Xian-Tu. Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface. Acta Physica Sinica, 2018, 67(9): 094701. doi: 10.7498/aps.67.20172613
    [10] Li Jun-Tao, Sun Yu-Tao, Hu Xiao-Mian, Ren Yu-Xin. Effect of vortex/wall interaction on turbulent mixing in the Richtmyer-Meshkov instability induced by shocked V shape interface. Acta Physica Sinica, 2017, 66(23): 235201. doi: 10.7498/aps.66.235201
    [11] Li Jun-Tao, Sun Yu-Tao, Pan Jian-Hua, Ren Yu-Xin. Instability and turbulent mixing of shocked V shaped interface. Acta Physica Sinica, 2016, 65(24): 245202. doi: 10.7498/aps.65.245202
    [12] SHA Sha, Chen Zhi-Hua, Zhang Qing-Bing. Numerical investigations on the interaction of shock waves with spherical SF6 bubbles. Acta Physica Sinica, 2015, 64(1): 015201. doi: 10.7498/aps.64.015201
    [13] Xiao De-Long, Sun Shun-Kai, Xue Chuang, Zhang Yang, Ding Ning. Numerical studies on the formation process of Z-pinch dynamic hohlruams and key issues of optimizing dynamic hohlraum radiation. Acta Physica Sinica, 2015, 64(23): 235203. doi: 10.7498/aps.64.235203
    [14] Sha Sha, Chen Zhi-Hua, Xue Da-Wen, Zhang Hui. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders. Acta Physica Sinica, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [15] Sha Sha, Chen Zhi-Hua, Xue Da-Wen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Acta Physica Sinica, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [16] Huo Xin-He, Wang Li-Feng, Tao Ye-Sheng, Li Ying-Jun. Bubble velocities in the nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in non-ideal fluids. Acta Physica Sinica, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [17] Cao Zhu-Rong, Miao Wen-Yong, Dong Jian-Jun, Yuan Yong-Teng, Yang Zheng-Hua, Yuan Zheng, Zhang Hai-Ying, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun. Experiment progress of ablative Rayleigh-Taylor instability based on X-ray framing camera. Acta Physica Sinica, 2012, 61(7): 075213. doi: 10.7498/aps.61.075213
    [18] Tao Ye-Sheng, Wang Li-Feng, Ye Wen-Hua, Zhang Guang-Cai, Zhang Jian-Cheng, Li Ying-Jun. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Acta Physica Sinica, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [19] Fang Zhi-Heng, Wang Wei, Jia Guo, Dong Jia-Qin, Xiong Jun, Zheng Wu-Di, Li Yong-Sheng, Luo Ping-Qing, Fu Si-Zu, Gu Yuan, Wang Shi-Ji. Imprinting and consequent Rayleigh-Taylor growth. Acta Physica Sinica, 2009, 58(10): 7057-7061. doi: 10.7498/aps.58.7057
    [20] Wang Li-Feng, Teng Ai-Ping, Ye Wen-Hua, Fan Zheng-Feng, Tao Ye-Sheng, Lin Chuan-Dong, Li Ying-Jun. Velocity gradient in Kelvin-Helmholtz instability for supersonic fluid. Acta Physica Sinica, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
Metrics
  • Abstract views:  4419
  • PDF Downloads:  69
  • Cited By: 0
Publishing process
  • Received Date:  08 April 2021
  • Accepted Date:  20 May 2021
  • Available Online:  15 August 2021
  • Published Online:  20 October 2021

/

返回文章
返回