Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface

Zhao Kai-Ge Xue Chuang Wang Li-Feng Ye Wen-Hua Wu Jun-Feng Ding Yong-Kun Zhang Wei-Yan He Xian-Tu

Citation:

Improved thin layer model of classical Rayleigh-Taylor instability for the deformation of interface

Zhao Kai-Ge, Xue Chuang, Wang Li-Feng, Ye Wen-Hua, Wu Jun-Feng, Ding Yong-Kun, Zhang Wei-Yan, He Xian-Tu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The thin shell (layer) configuration is adopted in inertial-confinement fusion (ICF) implosions. The weakly nonlinear deformation of the thin shell significantly influences the performances of implosion acceleration and fusion ignition, which is an important issue for the study of ICF physics. Based on the thin layer model of Ott (Ott E 1972 Phys. Rev. Lett. 29 1429), an improved thin layer model is proposed to describe the deformation and nonlinear evolution of the perturbed interface induced by the Rayleigh-Taylor instability (RTI). Differential equations describing motion are obtained by analyzing the forces of fluid elements (i.e., Newton's second law), which are then solved by numerical method. Then the position of the perturbed interface with an initial perturbation can be obtained. The linear growth rate obtained from our thin layer approximation agrees with that from the classical RTI. For fixed Atwood number (wave number), the total amplitudes of the bubble and spike obtained from the improved thin layer model agree with those from the three-order weakly nonlinear model. In addition, we compare the deformation and evolution of the layer from our model with results of the numerical simulation. In the linear regime, the amplitudes of the bubble and spike obtained from our model agree with those from the numerical simulation. And the evolution of the perturbed interface obtained from the improved thin layer model is consistent with that from the numerical simulation. In the nonlinear regime, the evolution trends of the total amplitude of the bubble and spike for both the improved thin layer model and numerical results are the same. However, the amplitude of the bubble is obviously greater than that of the spike in the later stage of the perturbation. This is because of some shortcomings in the improved thin layer model. The first shortcoming is that ignoring the dynamical pressure in the pressure difference. In fact, the shear velocity of the fluids plays an important role in the nonlinear regime of the perturbation. The second shortcoming is that the surface area of the upper interface equals the lower interface in the whole perturbation process of the present model. Thus, the present model can be used to describe the nonlinear evolution of the perturbed interface before the mushroom structure. Finally, it is worth noting that the improved thin layer model can be used to describe the deformation and nonlinear evolution of a thin layer for arbitrary Atwood number with a perturbation of large initial amplitude and arbitrary distribution. The initial perturbations of the triangular and rectangular waves are also discussed.
      Corresponding author: Xue Chuang, xue_chuang@iapcm.ac.cn;wang_lifeng@iapcm.ac.cn,lif_wang@pku.edu.cn ; Wang Li-Feng, xue_chuang@iapcm.ac.cn;wang_lifeng@iapcm.ac.cn,lif_wang@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675026, 11475034, 11575033), the Foundation of President of Chinese Academy of Engineering Physics (Grant No. 2014-1-040), and the National Basic Research Program of China (Grant No. 2013CB834100).
    [1]

    Wang J H 1994 Nonstationary Flow and Shock for Two-Dimensional (Beijing: Science Press) p10 (in Chinese) [王继海 1994 二维非定常流和激波 (北京:科学出版社) 第10页]

    [2]

    Rayleigh L 1893 Proc. R. Math. Soc. 14 170

    [3]

    Taylor G I 1950 Proc. R. Soc. London: Ser. A 201 192

    [4]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press) pp429-514

    [5]

    Nuckolls J H, Wood J, Thiessen A, Zimmerman G 1972 Nature 239 139

    [6]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [7]

    Atzeni S, Meyer-ter-Vehn J 2004 The physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press)

    [8]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227

    [9]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [10]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [11]

    Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Science 2001 Frontiers in High Density Physics (Washington, DC: Academic Press)

    [12]

    Vlemmings W H T, Diamond P J, Imai H 2006 Nature 440 58

    [13]

    Wang L F, Ye W H, Li Y J 2010 Phys. Plasmas 17 052305

    [14]

    Liu W H, Wang L F, Ye W H, He X T 2012 Phys. Plasmas 19 042705

    [15]

    Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F, Xue C 2012 Phys. Plasmas 19 112706

    [16]

    Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J, He X T 2010 Phys. Plasmas 17 122706

    [17]

    Ye W H, Wang L F, He X T 2010 Phys. Plasmas 17 122704

    [18]

    Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M, Yu M Y 2012 Phys. Plasmas 19 100701

    [19]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 052713

    [20]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 122702

    [21]

    Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K, Zhang W Y 2017 Sci. China: Phys. Mech. Astron. 60 055201

    [22]

    Zhang W Y, Ye W H, Wu J F, Miao W Y, Fan Z F, Wang L F, Gu J F, Dai Z S, Cao Z Y, Xu X W, Yuan Y T, Kang D G, Li Y S, Yu X J, Liu C L, Xue C, Zheng W D, Wang M, Pei W B, Zhu S P, Jiang S E, Liu S Y, Ding Y K, He X T 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋, 谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾, 刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业, 丁永坤, 贺贤土 2014 中国科学: 物理学 力学 天文学 44 1]

    [23]

    Reipurth B, Bally J 2001 Annu. Rev. Astron. Astrophys. 39 403

    [24]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 353

    [25]

    Kull H J 1991 Phys. Rep. 206 197

    [26]

    Sanz J 1994 Phys. Rev. Lett. 73 2700

    [27]

    Garnier J, Raviart P A, Cherfils-Clrouin C, Masse L 2003 Phys. Rev. Lett. 90 185003

    [28]

    Haan S W 1991 Phys. Fluids B 3 2349

    [29]

    Youngs D L 1984 Physica D 12 32

    [30]

    Zhang Y, Drake R P, Glimm J 2007 Phys. Plasmas 14 062703

    [31]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 329

    [32]

    Waddell J T, Niederhaus C E, Jacobs J W 2001 Phys. Fluids 13 1263

    [33]

    Wilkinson J P, Jacobs J W 2007 Phys. Fluids 19 124102

    [34]

    Olson D H, Jacobs J W 2009 Phys. Fluids 21 034103

    [35]

    Wang L F, Ye W H, Li Y J 2010 Chin. Phys. Lett. 27 025203

    [36]

    Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708

    [37]

    Davies R M, Taylor G I 1950 Proc. Roy. Soc. A 200 375

    [38]

    Layzer D 1955 Astrophys. J. 122 1

    [39]

    Zhang Q 1998 Phys. Rev. Lett. 81 3391

    [40]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502

    [41]

    Sohn S 2003 Phys. Rev. E 67 026301

    [42]

    Abarzhi S I, Nishihara K, Glimm J 2003 Phys. Lett. A 317 470

    [43]

    Mikaelian K O 2003 Phys. Rev. E 67 026319

    [44]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese) [陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 物理学报 61 075207]

    [45]

    Ott E 1972 Phys. Rev. Lett. 29 1429

    [46]

    Manheimer W, Colombant D, Ott E 1984 Phys. Fluids 27 2164

    [47]

    Colombant D, Manheimer W, Ott E 1984 Phys. Rev. Lett. 53 446

    [48]

    Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y, He X T 2014 Phys. Plasmas 21 122710

  • [1]

    Wang J H 1994 Nonstationary Flow and Shock for Two-Dimensional (Beijing: Science Press) p10 (in Chinese) [王继海 1994 二维非定常流和激波 (北京:科学出版社) 第10页]

    [2]

    Rayleigh L 1893 Proc. R. Math. Soc. 14 170

    [3]

    Taylor G I 1950 Proc. R. Soc. London: Ser. A 201 192

    [4]

    Chandrasekhar S 1961 Hydrodynamic and Hydromagnetic Stability (London: Oxford University Press) pp429-514

    [5]

    Nuckolls J H, Wood J, Thiessen A, Zimmerman G 1972 Nature 239 139

    [6]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [7]

    Atzeni S, Meyer-ter-Vehn J 2004 The physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford: Oxford University Press)

    [8]

    He X T, Zhang W Y 2007 Eur. Phys. J. D 44 227

    [9]

    Remington B A, Drake R P, Ryutov D D 2006 Rev. Mod. Phys. 78 755

    [10]

    Remington B A, Arnett D, Drake R P, Takabe H 1999 Science 284 1488

    [11]

    Committee on High Energy Density Plasma Physics Plasma Science Committee Board on Physics and Astronomy Division on Engineering and Physical Science 2001 Frontiers in High Density Physics (Washington, DC: Academic Press)

    [12]

    Vlemmings W H T, Diamond P J, Imai H 2006 Nature 440 58

    [13]

    Wang L F, Ye W H, Li Y J 2010 Phys. Plasmas 17 052305

    [14]

    Liu W H, Wang L F, Ye W H, He X T 2012 Phys. Plasmas 19 042705

    [15]

    Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F, Xue C 2012 Phys. Plasmas 19 112706

    [16]

    Wang L F, Ye W H, Sheng Z M, Don W S, Li Y J, He X T 2010 Phys. Plasmas 17 122706

    [17]

    Ye W H, Wang L F, He X T 2010 Phys. Plasmas 17 122704

    [18]

    Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M, Yu M Y 2012 Phys. Plasmas 19 100701

    [19]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 052713

    [20]

    Wang L F, Ye W H, Wu J F, Liu J, Zhang W Y, He X T 2016 Phys. Plasmas 23 122702

    [21]

    Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K, Zhang W Y 2017 Sci. China: Phys. Mech. Astron. 60 055201

    [22]

    Zhang W Y, Ye W H, Wu J F, Miao W Y, Fan Z F, Wang L F, Gu J F, Dai Z S, Cao Z Y, Xu X W, Yuan Y T, Kang D G, Li Y S, Yu X J, Liu C L, Xue C, Zheng W D, Wang M, Pei W B, Zhu S P, Jiang S E, Liu S Y, Ding Y K, He X T 2014 Sci. Sin.: Phys. Mech. Astron. 44 1 (in Chinese) [张维岩, 叶文华, 吴俊峰, 缪文勇, 范征锋, 王立锋, 谷建法, 戴振生, 曹柱荣, 徐小文, 袁永腾, 康洞国, 李永升, 郁晓瑾, 刘长礼, 薛创, 郑无敌, 王敏, 裴文兵, 朱少平, 江少恩, 刘慎业, 丁永坤, 贺贤土 2014 中国科学: 物理学 力学 天文学 44 1]

    [23]

    Reipurth B, Bally J 2001 Annu. Rev. Astron. Astrophys. 39 403

    [24]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 353

    [25]

    Kull H J 1991 Phys. Rep. 206 197

    [26]

    Sanz J 1994 Phys. Rev. Lett. 73 2700

    [27]

    Garnier J, Raviart P A, Cherfils-Clrouin C, Masse L 2003 Phys. Rev. Lett. 90 185003

    [28]

    Haan S W 1991 Phys. Fluids B 3 2349

    [29]

    Youngs D L 1984 Physica D 12 32

    [30]

    Zhang Y, Drake R P, Glimm J 2007 Phys. Plasmas 14 062703

    [31]

    Jacobs J W, Catton I 1988 J. Fluid Mech. 187 329

    [32]

    Waddell J T, Niederhaus C E, Jacobs J W 2001 Phys. Fluids 13 1263

    [33]

    Wilkinson J P, Jacobs J W 2007 Phys. Fluids 19 124102

    [34]

    Olson D H, Jacobs J W 2009 Phys. Fluids 21 034103

    [35]

    Wang L F, Ye W H, Li Y J 2010 Chin. Phys. Lett. 27 025203

    [36]

    Wang L F, Wu J F, Ye W H, Zhang W Y, He X T 2013 Phys. Plasmas 20 042708

    [37]

    Davies R M, Taylor G I 1950 Proc. Roy. Soc. A 200 375

    [38]

    Layzer D 1955 Astrophys. J. 122 1

    [39]

    Zhang Q 1998 Phys. Rev. Lett. 81 3391

    [40]

    Goncharov V N 2002 Phys. Rev. Lett. 88 134502

    [41]

    Sohn S 2003 Phys. Rev. E 67 026301

    [42]

    Abarzhi S I, Nishihara K, Glimm J 2003 Phys. Lett. A 317 470

    [43]

    Mikaelian K O 2003 Phys. Rev. E 67 026319

    [44]

    Tao Y S, Wang L F, Ye W H, Zhang G C, Zhang J C, Li Y J 2012 Acta Phys. Sin. 61 075207 (in Chinese) [陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏 2012 物理学报 61 075207]

    [45]

    Ott E 1972 Phys. Rev. Lett. 29 1429

    [46]

    Manheimer W, Colombant D, Ott E 1984 Phys. Fluids 27 2164

    [47]

    Colombant D, Manheimer W, Ott E 1984 Phys. Rev. Lett. 53 446

    [48]

    Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y, He X T 2014 Phys. Plasmas 21 122710

  • [1] Liu Cheng, Liang Hong. Axisymmetric lattice Boltzmann model for three-phase fluids and its application to the Rayleigh-Plateau instability. Acta Physica Sinica, 2023, 72(4): 044701. doi: 10.7498/aps.72.20221967
    [2] Ma Cong, Liu Bin, Liang Hong. Lattice Boltzmann simulation of three-dimensional fluid interfacial instability coupled with surface tension. Acta Physica Sinica, 2022, 71(4): 044701. doi: 10.7498/aps.71.20212061
    [3] Sun Wei, Lü Chong, Lei Zhu, Zhong Jia-Yong. Numerical study of effect of magnetic field on laser-driven Rayleigh-Taylor instability. Acta Physica Sinica, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [4] Yuan Yong-Teng, Tu Shao-Yong, Yin Chuan-Sheng, Li Ji-Wei, Dai Zhen-Sheng, Yang Zheng-Hua, Hou Li-Fei, Zhan Xia-Yu, Yan Ji, Dong Yun-Song, Pu Yu-Dong, Zou Shi-Yang, Yang Jia-Min, Miao Wen-Yong. Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability. Acta Physica Sinica, 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [5] Huang Hao-Wei, Liang Hong, Xu Jiang-Rong. Effect of surface tension on late-time growth of high-Reynolds-number Rayleigh-Taylor instability. Acta Physica Sinica, 2021, 70(11): 114701. doi: 10.7498/aps.70.20201960
    [6] Duan Liang, Liu Chong, Zhao Li-Chen, Yang Zhan-Ying. Quantitative relations between fundamental nonlinear waves and modulation instability. Acta Physica Sinica, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [7] Li Bi-Yong, Peng Jian-Xiang, Gu Yan, He Hong-Liang. Experimental research on Rayleigh-Taylor instability of oxygen-free high conductivity copper under explosive loading. Acta Physica Sinica, 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [8] Hu Xiao-Liang, Liang Hong, Wang Hui-Li. Lattice Boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high Reynolds numbers. Acta Physica Sinica, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [9] Li De-Mei, Lai Hui-Lin, Xu Ai-Guo, Zhang Guang-Cai, Lin Chuan-Dong, Gan Yan-Biao. Discrete Boltzmann simulation of Rayleigh-Taylor instability in compressible flows. Acta Physica Sinica, 2018, 67(8): 080501. doi: 10.7498/aps.67.20171952
    [10] Li Yuan, Luo Xi-Sheng. Theoretical analysis of effects of viscosity, surface tension, and magnetic field on the bubble evolution of Rayleigh-Taylor instability. Acta Physica Sinica, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] Yuan Yong-Teng, Wang Li-Feng, Tu Shao-Yong, Wu Jun-Feng, Cao Zhu-Rong, Zhan Xia-Yu, Ye Wen-Hua, Liu Shen-Ye, Jiang Shao-En, Ding Yong-Kun, Miao Wen-Yong. Experimental investigation on the influence of the dopant ratio on ablative Rayleigh-Taylor instability growth. Acta Physica Sinica, 2014, 63(23): 235203. doi: 10.7498/aps.63.235203
    [12] Huo Xin-He, Wang Li-Feng, Tao Ye-Sheng, Li Ying-Jun. Bubble velocities in the nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in non-ideal fluids. Acta Physica Sinica, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [13] Xia Tong-Jun, Dong Yong-Qiang, Cao Yi-Gang. Effects of surface tension on Rayleigh-Taylor instability. Acta Physica Sinica, 2013, 62(21): 214702. doi: 10.7498/aps.62.214702
    [14] Tao Ye-Sheng, Wang Li-Feng, Ye Wen-Hua, Zhang Guang-Cai, Zhang Jian-Cheng, Li Ying-Jun. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Acta Physica Sinica, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [15] Wang Bo-Bo. Entropy of Dirac field in toroidal black hole. Acta Physica Sinica, 2004, 53(7): 2401-2406. doi: 10.7498/aps.53.2401
    [16] Meng Qing-Miao. Stefan-Boltzmann's law of the Dirac field of static spherically symmetric black holes. Acta Physica Sinica, 2003, 52(8): 2102-2104. doi: 10.7498/aps.52.2102
    [17] Zhang Jing-Yi. Entropy of Dirac field in a general spherically symmetric and charged evaporatin g black hole. Acta Physica Sinica, 2003, 52(9): 2354-2358. doi: 10.7498/aps.52.2354
    [18] Zhang Jing-Yi, Zhao Zheng. . Acta Physica Sinica, 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [19] LIU JIN-YUAN, GONG YE, LI GUO-BING, MA TENG-CAI, ZHANG LIN. THE HELICAL INSTABILITY OF ARCS FOR LINEAR HEAT FLUX POTENTIAL MODEL IN AN AXIAL MAGNETIC FIELD. Acta Physica Sinica, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [20] ZHAO YANG, YANG XIANG-LIN. MODULATION INSTABILITY IN NONLINEAR MONOMODE OPTICAL FIBERS. Acta Physica Sinica, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
Metrics
  • Abstract views:  8907
  • PDF Downloads:  224
  • Cited By: 0
Publishing process
  • Received Date:  08 December 2017
  • Accepted Date:  22 February 2018
  • Published Online:  05 May 2018

/

返回文章
返回