Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Quantitative relations between fundamental nonlinear waves and modulation instability

Duan Liang Liu Chong Zhao Li-Chen Yang Zhan-Ying

Citation:

Quantitative relations between fundamental nonlinear waves and modulation instability

Duan Liang, Liu Chong, Zhao Li-Chen, Yang Zhan-Ying
PDF
HTML
Get Citation
  • Nonlinear waves are ubiquitous in various physical systems, and they have become one of the research hotspots in nonlinear physics. For the experimental realization, observation and application of nonlinear waves, it is very important to understand the generation mechanism, and determine the essential excitation conditions of various nonlinear waves. In this paper, we first briefly review the experimental and theoretical research progress of nonlinear waves in recent years. Based on the exact nonlinear wave solutions and linear stability analysis results, we systemically discuss how to establish the quantitative relations between fundamental nonlinear waves and modulation instability. These relations would deepen our understanding on the mechanism of nonlinear waves. To solve the excitation conditions degenerations problem for some nonlinear waves, we further introduce the perturbation energy and relative phase to determine the excitation conditions of nonlinear waves. Finally, we present a set of complete parameters that can determine the excitation conditions of nonlinear waves, and give the excitation conditions and phase diagrams of the fundamental nonlinear waves. These results can be used to realize controllable excitation of nonlinear waves, and could be extended to many other nonlinear systems.
      Corresponding author: Yang Zhan-Ying, zyyang@nwu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875220, 11775176)
    [1]

    Guo B, Pan X 1990 Chin. Phys. Lett. 7 241Google Scholar

    [2]

    Lou S Y, Ni G J, Huang G X 1992 Commun. Theor. Phys. 17 67Google Scholar

    [3]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [4]

    Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. X 2 011015

    [5]

    Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. E 86 056601Google Scholar

    [6]

    Chen Z, Segev M, et al 1996 Opt. Lett. 21 1821Google Scholar

    [7]

    Chen Z, Segev M, et al 1997 J. Opt. Soc. Am. B 14 1407Google Scholar

    [8]

    Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602Google Scholar

    [9]

    Deng D, Guo Q 2007 Opt. Lett. 32 3206Google Scholar

    [10]

    Solli D R, Ropers C, Koonath P, et al. 2007 Nature 450 1054Google Scholar

    [11]

    Kibler B, Fatome J, Finot C, et al. 2010 Nat. Phys. 6 790Google Scholar

    [12]

    Dudley J M, Genty G, Dias F, et al. 2009 Opt. Express 17 21497Google Scholar

    [13]

    Liu X 2011 Phys. Rev. A 84 053828Google Scholar

    [14]

    Kibler B, Fatome J, Finot C, et al. 2012 Sci. Rep. 2 463Google Scholar

    [15]

    Jia J, Lin J 2012 Opt. Express 20 7469Google Scholar

    [16]

    Zhang Y, Belic M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585Google Scholar

    [17]

    Lin J, Chen W W, Jia J 2014 J. Opt. Soc. Am. A 31 188Google Scholar

    [18]

    Liu W, Pang L, Han H, Shen Z, Lei M, Teng H, Wei Z 2016 Photon. Research 4 111Google Scholar

    [19]

    Liu W, Pang L, Yan H, Ma G, Lei M, Wei Z 2016 EuroPhys. Lett. 116 64002Google Scholar

    [20]

    Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [21]

    Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar

    [22]

    Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [23]

    Tsai Y Y, Tsai J Y, Lin I 2016 Nat. Phys. 12 573Google Scholar

    [24]

    Zhang W, Walls D F 1994 Phys. Rev. Lett. 72 60Google Scholar

    [25]

    Zhang W, Walls D F 1994 Phys. Rev. A 49 3799Google Scholar

    [26]

    Burger S, Bongs K, Dettmer S, et al. 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [27]

    Denschlag J, Simsarian J E, Feder D L, et al. 2000 Science 287 97Google Scholar

    [28]

    Huang G X 2001 Chin. Phys. Lett. 18 628Google Scholar

    [29]

    Khaykovich L, Schreck F, Ferrari G, et al. 2002 Science 296 1290Google Scholar

    [30]

    Strecker K E, Partridge G B, Truscott A G, et al. 2002 Nature 417 150Google Scholar

    [31]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402Google Scholar

    [32]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [33]

    Zhao D, Luo H G, Chai H Y 2008 Phys. Lett. A 372 5644Google Scholar

    [34]

    Feng B, Zhao D 2016 J. Differ. Equations 260 2973Google Scholar

    [35]

    Zeng J, Malomed B A 2017 Phys. Rev. E 95 052214Google Scholar

    [36]

    Yao Y Q, Han W, Li J, Liu W M 2018 J. Phys. B 51 105001Google Scholar

    [37]

    Wang D S, Liu J, Wang L 2018 Phys. Lett. A 382 799Google Scholar

    [38]

    He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, Zhang X F 2019 Phys. Rev. E 99 062216Google Scholar

    [39]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [40]

    Daniel M, Kavitha L, Amuda R 1999 Phys. Rev. B 59 13774Google Scholar

    [41]

    Daniel M, Beula J 2009 Chaos, Solitons Fractals 41 1842

    [42]

    Daniel M, Beula J 2009 Phys. Lett. A 373 2841Google Scholar

    [43]

    Zhao F, Li Z D, Li Q Y, et al 2012 Ann. Phys. 327 2085Google Scholar

    [44]

    Qi J W, Li Z D, Yang Z Y, et al. 2017 Phys. Lett. A 381 1874Google Scholar

    [45]

    Yan Z 2010 Commun. Theor. Phys. 54 947Google Scholar

    [46]

    Yan Z 2011 Phys. Lett. A 375 4274Google Scholar

    [47]

    Wu Y, Zhao L C, Lei X K 2015 Eur. Phys. J. B 88 297Google Scholar

    [48]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [49]

    Wen S, Wang Y, Su W, Xiang Y, Fu X, Fan D 2006 Phys. Rev. E 73 036617Google Scholar

    [50]

    Xiong H, Gan J, Wu Y 2017 Phys. Rev. Lett. 119 153901Google Scholar

    [51]

    Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [52]

    Lou S Y, Huang F 2017 Sci. Rep. 7 869Google Scholar

    [53]

    Polo J, Ahufinger V 2013 Phys. Rev. A 88 053628Google Scholar

    [54]

    McDonald G D, Kuhn C C N, Hardman K S, et al. 2014 Phys. Rev. Lett. 113 013002Google Scholar

    [55]

    Helm J L, Cornish S L, Gardiner S A 2015 Phys. Rev. Lett. 114 134101Google Scholar

    [56]

    Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659Google Scholar

    [57]

    Solli D R, Ropers C, Jalali B 2008 Phys. Rev. Lett. 101 233902Google Scholar

    [58]

    Frisquet B, Chabchoub A, Fatome J, et al. 2014 Phys. Rev. A 89 023821Google Scholar

    [59]

    Gertjerenken B, Billam T P, Blackley C L, et al. 2013 Phys. Rev. Lett. 111 100406Google Scholar

    [60]

    Fatome J, Kibler B, Finot C 2013 Opt. Lett. 38 1663Google Scholar

    [61]

    Yang G, Wang Y, Qin Z, et al. 2014 Phys. Rev. E 90 062909Google Scholar

    [62]

    Zhao L C 2018 Phys. Rev. E 97 062201Google Scholar

    [63]

    Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 171Google Scholar

    [64]

    Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823

    [65]

    Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81Google Scholar

    [66]

    Kivshar Y S 1991 Phys. Rev. A 43 1677Google Scholar

    [67]

    Kivshar Y S, Afanasjev V V 1991 Phys. Rev. A 44 R1446Google Scholar

    [68]

    Dong G, Liu Z 1996 Opt. Commun. 128 8Google Scholar

    [69]

    Li Z, Li L, Tian H, et al. 2000 Phys. Rev. Lett. 84 4096Google Scholar

    [70]

    Zhao L C, Li S C, Ling L 2014 Phys. Rev. E 89 023210Google Scholar

    [71]

    Liu C, Yang Z Y, Zhao L C, et al. 2015 Phys. Rev. E 91 022904Google Scholar

    [72]

    Ren Y, Yang Z Y, Liu C, et al. 2015 Phys. Lett. A 379 2991Google Scholar

    [73]

    Liu C, Yang Z Y, Zhao L C, et al. 2016 Phys. Rev. E 94 042221Google Scholar

    [74]

    Zhao L C, Li S C, Ling L 2016 Phys. Rev. E 93 032215Google Scholar

    [75]

    Peregrine D H 1983 J. Australas. Math. Soc. Ser. B 25 16Google Scholar

    [76]

    Akhmediev N N, Korneev V I 1986 Theor. Math. Phys. 1089

    [77]

    Kuznetsov E A 1977 Akademiia Nauk SSSR Doklady 236 575

    [78]

    Ma Y C 1979 Stud. Appl. Math. 60 43Google Scholar

    [79]

    Tajiri M, Watanabe Y 1998 Phys. Rev. E 57 3510Google Scholar

    [80]

    Priya N V, Senthilvelan M, Lakshmanan M 2013 Phys. Rev. E 88 022918Google Scholar

    [81]

    刘冲 2016 博士学位论文(西安: 西北大学)

    Liu C 2016 Ph. D. Dissertation (Xi’an: Northwest University) (in Chinese)

    [82]

    Chowdury A, Ankiewicz A, Akhmediev N 2015 Proc. R. Soc. A 471 20150130Google Scholar

    [83]

    Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101Google Scholar

    [84]

    Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V E 2015 Phys. Rev. X 5 041026

    [85]

    Zhang J H, Wang L, Liu C 2017 Proc. R. Soc. A 473 20160681Google Scholar

    [86]

    Liu C, Ren Y, Yang Z Y, Yang W L 2017 Chaos 27 083120Google Scholar

    [87]

    Liu C, Yang Z Y, Yang W L 2018 Chaos 28 083110Google Scholar

    [88]

    Ren Y, Liu C, Yang Z Y, Yang W L 2018 Phys. Rev. E 98 062223Google Scholar

    [89]

    Ren Y, Wang X, Liu C, Yang Z Y, Yang W L 2018 Commun. Nonlinear Sci. Numer. Simul. 63 161Google Scholar

    [90]

    Xu G, Gelash A, Chabchoub A, Zakharov V, Kibler B 2019 Phys. Rev. Lett. 122 084101Google Scholar

    [91]

    Liu C, Yang Z Y, Yang W L, Akhmediev N 2019 J. Opt. Soc. Am. B 36 1294Google Scholar

    [92]

    Guo B, Ling L 2011 Chin. Phys. Lett. 28 110202Google Scholar

    [93]

    Guo B, Ling L, Liu Q P 2012 Phys. Rev. E 85 026607Google Scholar

    [94]

    Ling L, Zhao L C 2013 Phys. Rev. E 88 043201

    [95]

    Ling L, Guo B, Zhao L C 2014 Phys. Rev. E 89 041201(R)

    [96]

    Zhao L C, Liu J 2012 J. Opt. Soc. Am. B 29 3119Google Scholar

    [97]

    Zhao L C, Liu J 2013 Phys. Rev. E 87 013201Google Scholar

    [98]

    Zhao L C, Xin G G, Yang Z Y 2014 Phys. Rev. E 90 022918Google Scholar

    [99]

    Baronio F, Conforti M, Degasperis A, et al. 2013 Phys. Rev. Lett. 111 114101Google Scholar

    [100]

    Baronio F, Conforti M, Degasperis A, et al. 2014 Phys. Rev. Lett. 113 034101Google Scholar

    [101]

    Zhao L C, Ling L, Yang Z Y, Liu J 2015 Commun. Nonlinear Sci. Numer. Simul. 23 21Google Scholar

    [102]

    Chen S, Cai X M, Grelu P, et al. 2016 Opt. Express 24 5886Google Scholar

    [103]

    Ling L, Zhao L C, Yang Z Y, et al. 2017 Phys. Rev. E 96 022211Google Scholar

    [104]

    Yan Z 2015 Nonlinear Dyn. 79 2515Google Scholar

    [105]

    Wen X Y, Yang Y, Yan Z 2015 Phys. Rev. E 92 012917Google Scholar

    [106]

    Zhao L C, Guo B, Ling L 2016 J. Math. Phys. 57 043508Google Scholar

    [107]

    Zhang G, Yan Z, Wen X Y, Chen Y 2017 Phys. Rev. E 95 042201Google Scholar

    [108]

    Li M, Shui J J, Xu T 2018 Appl. Math. Lett. 83 110Google Scholar

    [109]

    Zhao L C, Ling L 2014 arXiv: 1410.7536; 2016 J. Opt. Soc. Am. B 33 850

    [110]

    Baronio F, Chen S, Grelu P, et al. 2015 Phys. Rev. A 91 033804Google Scholar

    [111]

    He J S, Xu S, Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007Google Scholar

    [112]

    Xu S, He J S, Cheng Y, Porseizan K 2015 Math. Meth. Appl. Sci. 38 1106?Google Scholar

    [113]

    Xu S, He J S 2012 J. Math. Phys. 53 063507Google Scholar

    [114]

    Zhao L C, Yang Z Y, Ling L 2014 J. Phys. Soc. Jpn. 83 104401Google Scholar

    [115]

    Zhao L C, Liu C, Yang Z Y 2015 Commun. Nonlinear Sci. Numer. Simul. 20 9Google Scholar

    [116]

    Akhmediev N, Soto-Crespo J M, Ankiewicz A 2009 Phys. Rev. A 80 043818Google Scholar

    [117]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [118]

    Wang L, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [119]

    Zakharov V E, Ostrovsky L A 2009 Physica D 238 540Google Scholar

    [120]

    Hammani K, Wetzel B, Kibler B, et al. 2011 Opt. Lett. 36 2140Google Scholar

    [121]

    Soto-Crespo J M, Ankiewicz A, Devine N, et al. 2012 J. Opt. Soc. Am. B 29 1930Google Scholar

    [122]

    Forest M G, McLaughlin D W, Muraki D J, et al. 2000 J. Nonlinear Sci. 10 291Google Scholar

    [123]

    Hirota R 1973 J. Math. Phys. 14 805Google Scholar

    [124]

    Sasa N, Satsuma J 1991 J. Phys. Soc. Jpn. 60 409Google Scholar

    [125]

    Duan L, Zhao L C, Xu W H, et al. 2017 Phys. Rev. E 95 042212Google Scholar

    [126]

    Li P, Wang L, Kong L Q, et al. 2018 Appl. Math. Lett. 85 110Google Scholar

    [127]

    Erkintalo M, Genty G, Wetzel B, et al. 2011 Phys. Lett. A 375 2029Google Scholar

    [128]

    Agrawal G P 2007 Nonlinear Fiber Optics (Massachusetts: Academic Press)

    [129]

    Kevrekidis P G, Frantzeskakis D, Carretero-Gonzalez R 2007 Emergent Nonlinear Phenomena in BoseEinstein Condensates: Theory and Experiment (New York: Springer Science and Business Media)

    [130]

    Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253Google Scholar

    [131]

    Gao P, Duan L, Zhao L C, et al. 2019 Chaos 29 083112Google Scholar

    [132]

    Duan L, Yang Z Y, Zhao L C, et al. 2016 J. Mod. Opt. 63 1397Google Scholar

    [133]

    Liu X S, Zhao L C, Duan L, et al. 2017 Chin. Phys. B 26 120503Google Scholar

    [134]

    Liu C, Yang Z Y, Zhao L C, et al. 2015 Ann. Phys. 362 130Google Scholar

    [135]

    Wang L, Li S, Qi F H 2016 Nonlinear Dyn. 85 389Google Scholar

    [136]

    Wang X, Liu C, Wang L 2017 Chaos 27 093106Google Scholar

    [137]

    Blanco-Redondo A, De Sterke C M, Sipe J E, et al. 2016 Nat. Commun. 7 10427Google Scholar

    [138]

    Daniel M, Kavitha L 2001 Phys. Rev. B 63 172302Google Scholar

    [139]

    Tao Y, He J S 2012 Phys. Rev. E 85 026601Google Scholar

    [140]

    Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202Google Scholar

    [141]

    Ankiewicz A, Wang Y, Wabnitz S, et al. 2014 Phys. Rev. E 89 012907Google Scholar

    [142]

    Chowdury A, Kedziora D J, Ankiewicz A, et al. 2014 Phys. Rev. E 90 032922Google Scholar

    [143]

    Yang Y, Yan Z, Malomed B A 2015 Chaos 25 103112Google Scholar

    [144]

    Chowdury A, Kedziora D J, Ankiewicz A, et al. 2015 Phys. Rev. E 91 032928Google Scholar

    [145]

    Ankiewicz A, Kedziora D J, Chowdury A, et al. 2016 Phys. Rev. E 93 012206Google Scholar

    [146]

    Wang L, Zhang J H, Wang Z Q, et al. 2016 Phys. Rev. E 93 012214Google Scholar

    [147]

    Zhao L C, Ling L, Yang Z Y 2018 Phys. Rev. E 97 022218Google Scholar

    [148]

    Duan L, Yang Z Y, Gao P, et al. 2019 Phys. Rev. E 99 012216Google Scholar

    [149]

    Wen X Y, Yan Z, Boris A, Malomed 216 Chaos 26 123110

    [150]

    Wen X Y, Yan Z 2018 J. Math. Phys. 59 073511Google Scholar

    [151]

    Wen X Y, Yan Z 2017 Commun. Nonlinear. Sci. Numer. Simul. 43 311Google Scholar

    [152]

    Ohta Y, Yang J 2012 Phys. Rev. E 86 036604Google Scholar

    [153]

    Yang B, Chen Y 2018 Appl. Math. Lett. 82 43Google Scholar

    [154]

    Li M, Xu T, Meng D 2016 J. Phys. Soc. Jpn. 85 124001Google Scholar

    [155]

    Xu T, Li H, Zhang H, et al. 2017 Appl. Math. Lett. 63 88Google Scholar

    [156]

    Dai C Q, Zhu H P 2013 J. Opt. Soc. Am. B 30 3291Google Scholar

    [157]

    Chen J, Chen Y, Feng B F, Maruno K 2015 Phys. Lett. A 379 1510Google Scholar

    [158]

    Zhang X, Chen Y, Tang X 2018 Comput. Math. Appl. 76 1938Google Scholar

    [159]

    Qian C, Rao J G, Liu Y B, He J S 2016 Chin. Phys. Lett. 33 110201Google Scholar

    [160]

    Zhang X, Chen Y 2017 Commun. Nonlinear. Sci. Numer. Simul. 52 24Google Scholar

    [161]

    Liu Y K, and Li B 2017 Chin. Phys. Lett. 34 010202Google Scholar

    [162]

    Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J, Cuevas-Maraver J 2016 Phys. Rev. A 93 063623Google Scholar

    [163]

    Wang W, Kevrekidis P G, Carretero-Gonzalez R, Frantzeskakis D J 2016 Phys. Rev. A 93 023630Google Scholar

    [164]

    Rao J, Porsezian K, He J S 2017 Chaos 27 083115??Google Scholar

    [165]

    Rao J, Porsezian K, He J S, Kanna T 2018 Proc. R. Soc. A 474 20170627

    [166]

    Zeng L, Zeng J, Kartashov Y V, Malomed B A 2019 Opt. Lett. 44 1206Google Scholar

  • 图 1  自散焦的两组分耦合非线性薛定谔系统的调制不稳定增益的分布 (a)调制不稳定增益在$(\varOmega, \omega)$平面的分布, 绿色点状曲线表示调制不稳定区的边界; (b)调制不稳定性在$(\varOmega, a_{1})$平面的分布

    Figure 1.  Modulation instability distributions of the defocusing two component coupled nonlinear Schrödinger system: (a) Modulation instability distribution in the $(\varOmega, \omega)$ plane, green dot curves are the boundary of the modulation instability regime; (b) modulation instability distribution in the $(\varOmega, a_{1})$ plane.

    图 2  标准非线性薛定谔系统的调制不稳定增益分布和基本非线性波激发的相图 (a1)和(b1)分别为调制不稳定增益在$(\omega, \varOmega)$平面和$(a, \varOmega)$平面的分布. “MI”和“MS”分别表示调制不稳定性和调制稳定性, 红色虚线是共振线; (a2)和(b2)分别为基本非线性波在(a1)和(b1)中调制不稳定增益分布平面的相图. “AB”,“RW”和“KM”分别为Akhmediev呼吸子、怪波和Kuznetsov-Ma呼吸子

    Figure 2.  Modulation instability distributions and phase diagrams of fundamental nonlinear waves in standard nonlinear Schrödinger system: (a1) and (b1) are the distributions of the modulation instability gain in the $(\omega, \varOmega)$ plane and the $(a, \varOmega)$, respectively. “MI” and “MS” denote modulation instability and modulation stability, respectively. the red dotted line is the resonance line; (a2) and (b2) are the phase diagrams of fundamental nonlinear waves on the modulation instability gain distribution planes correspond to (a1) and (b1), respectively. "AB", "RW" and "KM" denote Akhmediev breather, rogue wave and Kuznetsov-Ma breather, respectively.

    图 3  Sasa-Satsuma系统的调制不稳定增益分布和基本非线性波激发的相图 (a) Sasa-Satsuma系统中调制不稳定增益在背景频率$\omega$和扰动频率$\varOmega$平面的分布. “MI”和“MS”分别表示调制不稳定和调制稳定, 黄颜色圆点为共振线上临界点; (b)非线性波在调制不稳定增益分布平面的相图. “AB”, “RW” 和“KM” 分别为Akhmediev呼吸子、怪波和Kuznetsov-Ma呼吸子; “WS”, “WST”, “AD”和Periodic wave分别表示W形孤子、W形孤子链、反暗孤子和周期波

    Figure 3.  Modulation instability distributions and phase diagrams of fundamental nonlinear waves in Sasa-Satsuma system: (a) Distributions of the modulation instability gain in the background frequency $\omega$ and perturbation frequency$\varOmega$ plane. “MI” and “MS” denote modulation instability and modulation stability, respectively. The yellow dots are the critical points on the resonance line; (b) phase diagrams of nonlinear waves in the modulation instability gain distribution planes. “AB”, “RW” and “KM” denote Akhmediev breather, rogue wave and Kuznetsov-Ma breather, respectively; “WS”, “WST” and “AD” denote the W-shaped soliton, W-shaped soliton train and anti-dark soliton, respectively.

    图 4  Hirota系统中的调制不稳定增益分布和基本非线性波激发的相图 (a) Hirota系统中调制不稳定增益在背景频率$\omega$和扰动频率$\varOmega$平面的分布. “MI”和“MS”分别表示调制不稳定和调制稳定; (b)非线性波在调制不稳定增益分布平面的相图. “AB”, “RW” 和“KM” 分别为Akhmediev呼吸子、怪波和Kuznetsov-Ma呼吸子; “WS”, “AD”, “PW”和“MPS”分别表示W形孤子、反暗孤子、周期波和多峰孤子

    Figure 4.  Modulation instability distributions and phase diagrams of fundamental nonlinear waves in Hirota system; (a) Distributions of the modulation instability gain in the background frequency $\omega$ and perturbation frequency$\varOmega$ plane. “MI” and “MS” denote modulation instability and modulation stability, respectively; (b) phase diagrams of nonlinear waves in the modulation instability gain distribution planes. “AB”, “RW” and “KM” denote Akhmediev breather, rogue wave and Kuznetsov-Ma breather, respectively; “WS”, “AD”, “PW” and “MPS” denote the W-shaped soliton, anti-dark soliton, periodic wave and multi-peak soliton, respectively.

    图 5  四阶非线性薛定谔系统调制不稳定增益分布和基本非线性波激发的相图 (a) 调制不稳定增益在背景频率$\omega$和扰动频率$\varOmega$平面的分布, “MI”和“MS” 分别表示调制不稳定性和调制稳定性; (b),(c) 基本非线性波在背景频率$\omega$和扰动频率$\varOmega$平面的相图, “AB”, “RW”, “KM”、“PW”, “WST”, “WS$_{\rm r}$”, “$\rm WS_{ {nr}}$” 和“AD”分别为Akhmediev呼吸子、怪波、Kuznetsov-Ma呼吸子、周期波、W形孤子链、有理的W形孤子、非有理的W形孤子和反暗孤子

    Figure 5.  Modulation instability distributions and phase diagrams of fundamental nonlinear waves in fourth-order nonlinear Schrödinger system: (a) Distributions of the modulation instability gain in the background frequency $\omega$ and perturbation frequency$\varOmega$ plane. “MI” and “MS” denote modulation instability and modulation stability, respectively; (b), (c) phase diagrams of nonlinear waves in the background frequency $\omega$ and perturbation frequency $\varOmega$ plane. “AB”, “RW”, “KM”, “PW”, “WST”, “WS$_{\rm r}$”, “WS$\rm WS_{{nr}}$” and “AD” denote Akhmediev breather, rogue wave, Kuznetsov-Ma breather, periodic wave, W-shaped soliton train, rational W-shaped soliton, nonrational W-shaped soliton and anti-dark soliton, respectively.

    图 6  不同系统中平面波背景上基本非线性波在背景频率$\omega$, 扰动频率$\varOmega$, 扰动能量$\varepsilon$和相对相位$\varphi$空间的相图 (a) 四阶非线性薛定谔系统, 参数取$\beta={1}/{12}$, $\gamma=-{1}/{36}$, $a=1$; (b) Hirota系统, 参数取$\beta={1}/{12}$, $\gamma=0$, $a=1$; (c)非线性薛定谔系统, 参数取$\beta={1}/{12}$, $\gamma=0$, $a=1$; (d)反暗孤子和非有理W形孤子依赖于相对相位的相图; (e)周期波, W形孤子链和有理W形孤子在$(\varphi, \varOmega)$平面的相图. 图中“TW”, “KM”, “AB”, “RW”, “MPS”, “AD”, “WS$_{\rm {nr}}$”, “PW”, “WST”和“WS$_{\rm r}$”分别表示Tajiri-Watanabe呼吸子、Kuznetsov-Ma呼吸子、Akhmediev呼吸子、怪波、多峰孤子、反暗孤子、非有理W形孤子、周期波、W形孤子链和有理W形孤子

    Figure 6.  Phase diagrams of nonlinear waves in the background frequency $\omega$, perturbation frequency $\varOmega$, perturbation energy $\varepsilon$ and relative phase $\varphi$ space for different systems: (a) Fourth-order nonlinear Schrödinger system. Parameters are $\beta={1}/{12}$, $\gamma=-{1}/{36}$, $a=1$; (b) hirota system. Parameters are $\beta={1}/{12}$, $\gamma=0$, $a=1$; (c) nonlinear Schrödinger system. Parameters are $\beta=\gamma=0$, $a=1$; (d) phase diagram of anti-dark soliton and nonrational W-shaped soliton in relative phase space; (e) phase diagram of periodic wave, W-shaped soliton train and rational W-shaped soliton in the $(\varphi, \varOmega)$ plane. “TW”, “KM”, “AB”, “RW”, “MPS”, “AD”, “WS$_{\rm {nr}}$”, “PW”, “WST” and “WS$_{\rm r}$” denote Tajiri-Watanabe breather, Kuznetsov-Ma breather, Akhmediev breather, rogue wave, multi-peak soliton, anti-dark soliton, nonrational W-shaped soliton, periodic wave, W-shaped soliton train and rational W-shaped soliton.

    图 7  不同非线性波的转换关系 (a) 呼吸子和怪波之间的转换关系; (b) 孤子和周期波之间的转换关系. 图中“TW”, “KM”, “AB”, “RW”分别为Tajiri-Watanabe呼吸子、Kuznetsov-Ma呼吸子、Akhmediev呼吸子和怪波, “MPS”, “AD”, “WS$_{\rm {nr}}$”, “PW”, “WST”和“WS$_{\rm r}$” 分别表示多峰孤子、反暗孤子、非有理W形孤子、周期波、W形孤子链和有理W形孤子

    Figure 7.  Conversion relationship of different nonlinear waves: (a) Conversion relationship between breathers and rogue wave; (b) conversion relationship between the solitons and periodic waves. “TW”, “KM”, “AB”, “RW”, “MPS”, “AD”, “WS$_{\rm {nr}}$”, “PW”, “WST” and “WS$_{\rm r}$” denote Tajiri-Watanabe breather, Kuznetsov-Ma breather, Akhmediev breather, rogue wave, multi-peak soliton, anti-dark soliton, nonrational W-shaped soliton, periodic wave, W-shaped soliton train and rational W-shaped soliton.

    表 1  基本非线性波的激发条件

    Table 1.  Excitation conditions of fundamental nonlinear waves.

    激发条件非线性波类型
    $\varOmega$$\omega$$\varepsilon$$\varphi$
    0$\omega^{2}-\alpha\neq0 $0$\varphi\in \left(\dfrac{{\text{π}}}{2}, \dfrac{3{\text{π}}}{2}\right)+2 n{\text{π}}$怪波
    $\omega^{2}-\alpha=0$, $\alpha\geqslant 0$有理W形孤子
    0$\omega^{2}-\dfrac{\varepsilon^{2}}{24}-\alpha\neq0$, $\varepsilon>0$$\varphi\in\mathbb{R}$Kuznetsov-Ma呼吸子
    $\omega^{2}-\dfrac{\varepsilon^{2}}{24}-\alpha=0$, $\varepsilon>0$$\varphi\in\left(\dfrac{{\text{π}}}{2},\right. \left.\dfrac{3{\text{π}}}{2}\right]+2 n{\text{π}}$非有理W形孤子
    $\omega^{2}-\dfrac{\varepsilon^{2}}{24}-\alpha=0$, $\varepsilon > 0$$\varphi\in \left(-\dfrac{{\text{π}}}{2},\right. \left.\dfrac{{\text{π}}}{2}\right]+2 n{\text{π}}$反暗孤子
    $\omega^{2}+\dfrac{\varOmega^{2} }{6}-\alpha\neq0, \varOmega\in(0, 2)$ 0$\varphi\in \left(\dfrac{{\text{π}}}{2},\dfrac{3{\text{π}}}{2}\right)+2 n{\text{π}}$Akhmediev呼吸子
    $\omega^{2}+\dfrac{\varOmega^{2} }{6}-\alpha=0$$0<|\varOmega|<\dfrac{\sqrt{3}}{|\sec\varphi|}$W形孤子链
    $\omega^{2}+\dfrac{\varOmega^{2} }{6}-\alpha=0$$\dfrac{\sqrt{3}}{|\sec\varphi|}<|\varOmega|<\dfrac{2}{|\sec\varphi|}$周期波
    $1+2\beta\left(\pm\sqrt{\varDelta}-3\omega\right)+2\gamma\nabla\neq0$$\varphi\in \mathbb{\rm R}$Tajiri-Watanabe呼吸子
    $1+2\beta\left(\pm\sqrt{\varDelta}-3\omega\right)+2\gamma\nabla=0$多峰孤子
    注1: $\omega$, $\varOmega$, $\varepsilon$和$\varphi$分别为背景频率、扰动频率、扰动能量和相对相位. 参数$\alpha=\dfrac{\beta^{2}}{16\gamma^{2}}+\dfrac{1}{12\gamma}+a^{2}$, $\varDelta = {\bigg[ {\dfrac{ {\sqrt { { {({\varepsilon ^2} - 4{\varOmega ^2} + 16{a^2})}^2} + 16{\varepsilon ^2}{\varOmega ^2} } - ({\varepsilon ^2} - 4{\varOmega ^2} + 16{a^2})} }{8} } \bigg]^{1/2} }$, $\nabla=-2\varDelta\pm8\omega\sqrt{\varDelta}-6\omega^{2}+6 a^{2}+\dfrac{1}{4}\varepsilon^{2}-\varOmega^{2}$.
    DownLoad: CSV
  • [1]

    Guo B, Pan X 1990 Chin. Phys. Lett. 7 241Google Scholar

    [2]

    Lou S Y, Ni G J, Huang G X 1992 Commun. Theor. Phys. 17 67Google Scholar

    [3]

    Chabchoub A, Hoffmann N P, Akhmediev N 2011 Phys. Rev. Lett. 106 204502Google Scholar

    [4]

    Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. X 2 011015

    [5]

    Chabchoub A, Hoffmann N, Onorato M, et al. 2012 Phys. Rev. E 86 056601Google Scholar

    [6]

    Chen Z, Segev M, et al 1996 Opt. Lett. 21 1821Google Scholar

    [7]

    Chen Z, Segev M, et al 1997 J. Opt. Soc. Am. B 14 1407Google Scholar

    [8]

    Guo Q, Luo B, Yi F, Chi S, Xie Y 2004 Phys. Rev. E 69 016602Google Scholar

    [9]

    Deng D, Guo Q 2007 Opt. Lett. 32 3206Google Scholar

    [10]

    Solli D R, Ropers C, Koonath P, et al. 2007 Nature 450 1054Google Scholar

    [11]

    Kibler B, Fatome J, Finot C, et al. 2010 Nat. Phys. 6 790Google Scholar

    [12]

    Dudley J M, Genty G, Dias F, et al. 2009 Opt. Express 17 21497Google Scholar

    [13]

    Liu X 2011 Phys. Rev. A 84 053828Google Scholar

    [14]

    Kibler B, Fatome J, Finot C, et al. 2012 Sci. Rep. 2 463Google Scholar

    [15]

    Jia J, Lin J 2012 Opt. Express 20 7469Google Scholar

    [16]

    Zhang Y, Belic M, Wu Z, Zheng H, Lu K, Li Y, Zhang Y 2013 Opt. Lett. 38 4585Google Scholar

    [17]

    Lin J, Chen W W, Jia J 2014 J. Opt. Soc. Am. A 31 188Google Scholar

    [18]

    Liu W, Pang L, Han H, Shen Z, Lei M, Teng H, Wei Z 2016 Photon. Research 4 111Google Scholar

    [19]

    Liu W, Pang L, Yan H, Ma G, Lei M, Wei Z 2016 EuroPhys. Lett. 116 64002Google Scholar

    [20]

    Liu X, Yao X, Cui Y 2018 Phys. Rev. Lett. 121 023905Google Scholar

    [21]

    Liu X, Popa D, Akhmediev N 2019 Phys. Rev. Lett. 123 093901Google Scholar

    [22]

    Bailung H, Sharma S K, Nakamura Y 2011 Phys. Rev. Lett. 107 255005Google Scholar

    [23]

    Tsai Y Y, Tsai J Y, Lin I 2016 Nat. Phys. 12 573Google Scholar

    [24]

    Zhang W, Walls D F 1994 Phys. Rev. Lett. 72 60Google Scholar

    [25]

    Zhang W, Walls D F 1994 Phys. Rev. A 49 3799Google Scholar

    [26]

    Burger S, Bongs K, Dettmer S, et al. 1999 Phys. Rev. Lett. 83 5198Google Scholar

    [27]

    Denschlag J, Simsarian J E, Feder D L, et al. 2000 Science 287 97Google Scholar

    [28]

    Huang G X 2001 Chin. Phys. Lett. 18 628Google Scholar

    [29]

    Khaykovich L, Schreck F, Ferrari G, et al. 2002 Science 296 1290Google Scholar

    [30]

    Strecker K E, Partridge G B, Truscott A G, et al. 2002 Nature 417 150Google Scholar

    [31]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402Google Scholar

    [32]

    Bludov Y V, Konotop V V, Akhmediev N 2009 Phys. Rev. A 80 033610Google Scholar

    [33]

    Zhao D, Luo H G, Chai H Y 2008 Phys. Lett. A 372 5644Google Scholar

    [34]

    Feng B, Zhao D 2016 J. Differ. Equations 260 2973Google Scholar

    [35]

    Zeng J, Malomed B A 2017 Phys. Rev. E 95 052214Google Scholar

    [36]

    Yao Y Q, Han W, Li J, Liu W M 2018 J. Phys. B 51 105001Google Scholar

    [37]

    Wang D S, Liu J, Wang L 2018 Phys. Lett. A 382 799Google Scholar

    [38]

    He Z M, Wen L, Wang Y J, Chen G P, Tan R B, Dai C Q, Zhang X F 2019 Phys. Rev. E 99 062216Google Scholar

    [39]

    Shats M, Punzmann H, Xia H 2010 Phys. Rev. Lett. 104 104503Google Scholar

    [40]

    Daniel M, Kavitha L, Amuda R 1999 Phys. Rev. B 59 13774Google Scholar

    [41]

    Daniel M, Beula J 2009 Chaos, Solitons Fractals 41 1842

    [42]

    Daniel M, Beula J 2009 Phys. Lett. A 373 2841Google Scholar

    [43]

    Zhao F, Li Z D, Li Q Y, et al 2012 Ann. Phys. 327 2085Google Scholar

    [44]

    Qi J W, Li Z D, Yang Z Y, et al. 2017 Phys. Lett. A 381 1874Google Scholar

    [45]

    Yan Z 2010 Commun. Theor. Phys. 54 947Google Scholar

    [46]

    Yan Z 2011 Phys. Lett. A 375 4274Google Scholar

    [47]

    Wu Y, Zhao L C, Lei X K 2015 Eur. Phys. J. B 88 297Google Scholar

    [48]

    Zheludev N I, Kivshar Y S 2012 Nat. Mater. 11 917Google Scholar

    [49]

    Wen S, Wang Y, Su W, Xiang Y, Fu X, Fan D 2006 Phys. Rev. E 73 036617Google Scholar

    [50]

    Xiong H, Gan J, Wu Y 2017 Phys. Rev. Lett. 119 153901Google Scholar

    [51]

    Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar

    [52]

    Lou S Y, Huang F 2017 Sci. Rep. 7 869Google Scholar

    [53]

    Polo J, Ahufinger V 2013 Phys. Rev. A 88 053628Google Scholar

    [54]

    McDonald G D, Kuhn C C N, Hardman K S, et al. 2014 Phys. Rev. Lett. 113 013002Google Scholar

    [55]

    Helm J L, Cornish S L, Gardiner S A 2015 Phys. Rev. Lett. 114 134101Google Scholar

    [56]

    Zhao L C, Ling L, Yang Z Y, Liu J 2016 Nonlinear Dyn. 83 659Google Scholar

    [57]

    Solli D R, Ropers C, Jalali B 2008 Phys. Rev. Lett. 101 233902Google Scholar

    [58]

    Frisquet B, Chabchoub A, Fatome J, et al. 2014 Phys. Rev. A 89 023821Google Scholar

    [59]

    Gertjerenken B, Billam T P, Blackley C L, et al. 2013 Phys. Rev. Lett. 111 100406Google Scholar

    [60]

    Fatome J, Kibler B, Finot C 2013 Opt. Lett. 38 1663Google Scholar

    [61]

    Yang G, Wang Y, Qin Z, et al. 2014 Phys. Rev. E 90 062909Google Scholar

    [62]

    Zhao L C 2018 Phys. Rev. E 97 062201Google Scholar

    [63]

    Hasegawa A, Tappert F 1973 Appl. Phys. Lett. 23 171Google Scholar

    [64]

    Zakharov V E, Shabat A B 1973 Sov. Phys. JETP 37 823

    [65]

    Kivshar Y S, Luther-Davies B 1998 Phys. Rep. 298 81Google Scholar

    [66]

    Kivshar Y S 1991 Phys. Rev. A 43 1677Google Scholar

    [67]

    Kivshar Y S, Afanasjev V V 1991 Phys. Rev. A 44 R1446Google Scholar

    [68]

    Dong G, Liu Z 1996 Opt. Commun. 128 8Google Scholar

    [69]

    Li Z, Li L, Tian H, et al. 2000 Phys. Rev. Lett. 84 4096Google Scholar

    [70]

    Zhao L C, Li S C, Ling L 2014 Phys. Rev. E 89 023210Google Scholar

    [71]

    Liu C, Yang Z Y, Zhao L C, et al. 2015 Phys. Rev. E 91 022904Google Scholar

    [72]

    Ren Y, Yang Z Y, Liu C, et al. 2015 Phys. Lett. A 379 2991Google Scholar

    [73]

    Liu C, Yang Z Y, Zhao L C, et al. 2016 Phys. Rev. E 94 042221Google Scholar

    [74]

    Zhao L C, Li S C, Ling L 2016 Phys. Rev. E 93 032215Google Scholar

    [75]

    Peregrine D H 1983 J. Australas. Math. Soc. Ser. B 25 16Google Scholar

    [76]

    Akhmediev N N, Korneev V I 1986 Theor. Math. Phys. 1089

    [77]

    Kuznetsov E A 1977 Akademiia Nauk SSSR Doklady 236 575

    [78]

    Ma Y C 1979 Stud. Appl. Math. 60 43Google Scholar

    [79]

    Tajiri M, Watanabe Y 1998 Phys. Rev. E 57 3510Google Scholar

    [80]

    Priya N V, Senthilvelan M, Lakshmanan M 2013 Phys. Rev. E 88 022918Google Scholar

    [81]

    刘冲 2016 博士学位论文(西安: 西北大学)

    Liu C 2016 Ph. D. Dissertation (Xi’an: Northwest University) (in Chinese)

    [82]

    Chowdury A, Ankiewicz A, Akhmediev N 2015 Proc. R. Soc. A 471 20150130Google Scholar

    [83]

    Zakharov V E, Gelash A A 2013 Phys. Rev. Lett. 111 054101Google Scholar

    [84]

    Kibler B, Chabchoub A, Gelash A, Akhmediev N, Zakharov V E 2015 Phys. Rev. X 5 041026

    [85]

    Zhang J H, Wang L, Liu C 2017 Proc. R. Soc. A 473 20160681Google Scholar

    [86]

    Liu C, Ren Y, Yang Z Y, Yang W L 2017 Chaos 27 083120Google Scholar

    [87]

    Liu C, Yang Z Y, Yang W L 2018 Chaos 28 083110Google Scholar

    [88]

    Ren Y, Liu C, Yang Z Y, Yang W L 2018 Phys. Rev. E 98 062223Google Scholar

    [89]

    Ren Y, Wang X, Liu C, Yang Z Y, Yang W L 2018 Commun. Nonlinear Sci. Numer. Simul. 63 161Google Scholar

    [90]

    Xu G, Gelash A, Chabchoub A, Zakharov V, Kibler B 2019 Phys. Rev. Lett. 122 084101Google Scholar

    [91]

    Liu C, Yang Z Y, Yang W L, Akhmediev N 2019 J. Opt. Soc. Am. B 36 1294Google Scholar

    [92]

    Guo B, Ling L 2011 Chin. Phys. Lett. 28 110202Google Scholar

    [93]

    Guo B, Ling L, Liu Q P 2012 Phys. Rev. E 85 026607Google Scholar

    [94]

    Ling L, Zhao L C 2013 Phys. Rev. E 88 043201

    [95]

    Ling L, Guo B, Zhao L C 2014 Phys. Rev. E 89 041201(R)

    [96]

    Zhao L C, Liu J 2012 J. Opt. Soc. Am. B 29 3119Google Scholar

    [97]

    Zhao L C, Liu J 2013 Phys. Rev. E 87 013201Google Scholar

    [98]

    Zhao L C, Xin G G, Yang Z Y 2014 Phys. Rev. E 90 022918Google Scholar

    [99]

    Baronio F, Conforti M, Degasperis A, et al. 2013 Phys. Rev. Lett. 111 114101Google Scholar

    [100]

    Baronio F, Conforti M, Degasperis A, et al. 2014 Phys. Rev. Lett. 113 034101Google Scholar

    [101]

    Zhao L C, Ling L, Yang Z Y, Liu J 2015 Commun. Nonlinear Sci. Numer. Simul. 23 21Google Scholar

    [102]

    Chen S, Cai X M, Grelu P, et al. 2016 Opt. Express 24 5886Google Scholar

    [103]

    Ling L, Zhao L C, Yang Z Y, et al. 2017 Phys. Rev. E 96 022211Google Scholar

    [104]

    Yan Z 2015 Nonlinear Dyn. 79 2515Google Scholar

    [105]

    Wen X Y, Yang Y, Yan Z 2015 Phys. Rev. E 92 012917Google Scholar

    [106]

    Zhao L C, Guo B, Ling L 2016 J. Math. Phys. 57 043508Google Scholar

    [107]

    Zhang G, Yan Z, Wen X Y, Chen Y 2017 Phys. Rev. E 95 042201Google Scholar

    [108]

    Li M, Shui J J, Xu T 2018 Appl. Math. Lett. 83 110Google Scholar

    [109]

    Zhao L C, Ling L 2014 arXiv: 1410.7536; 2016 J. Opt. Soc. Am. B 33 850

    [110]

    Baronio F, Chen S, Grelu P, et al. 2015 Phys. Rev. A 91 033804Google Scholar

    [111]

    He J S, Xu S, Porsezian K 2012 J. Phys. Soc. Jpn. 81 124007Google Scholar

    [112]

    Xu S, He J S, Cheng Y, Porseizan K 2015 Math. Meth. Appl. Sci. 38 1106?Google Scholar

    [113]

    Xu S, He J S 2012 J. Math. Phys. 53 063507Google Scholar

    [114]

    Zhao L C, Yang Z Y, Ling L 2014 J. Phys. Soc. Jpn. 83 104401Google Scholar

    [115]

    Zhao L C, Liu C, Yang Z Y 2015 Commun. Nonlinear Sci. Numer. Simul. 20 9Google Scholar

    [116]

    Akhmediev N, Soto-Crespo J M, Ankiewicz A 2009 Phys. Rev. A 80 043818Google Scholar

    [117]

    He J S, Zhang H R, Wang L H, Porsezian K, Fokas A S 2013 Phys. Rev. E 87 052914Google Scholar

    [118]

    Wang L, He J S, Xu H, Wang J, Porsezian K 2017 Phys. Rev. E 95 042217Google Scholar

    [119]

    Zakharov V E, Ostrovsky L A 2009 Physica D 238 540Google Scholar

    [120]

    Hammani K, Wetzel B, Kibler B, et al. 2011 Opt. Lett. 36 2140Google Scholar

    [121]

    Soto-Crespo J M, Ankiewicz A, Devine N, et al. 2012 J. Opt. Soc. Am. B 29 1930Google Scholar

    [122]

    Forest M G, McLaughlin D W, Muraki D J, et al. 2000 J. Nonlinear Sci. 10 291Google Scholar

    [123]

    Hirota R 1973 J. Math. Phys. 14 805Google Scholar

    [124]

    Sasa N, Satsuma J 1991 J. Phys. Soc. Jpn. 60 409Google Scholar

    [125]

    Duan L, Zhao L C, Xu W H, et al. 2017 Phys. Rev. E 95 042212Google Scholar

    [126]

    Li P, Wang L, Kong L Q, et al. 2018 Appl. Math. Lett. 85 110Google Scholar

    [127]

    Erkintalo M, Genty G, Wetzel B, et al. 2011 Phys. Lett. A 375 2029Google Scholar

    [128]

    Agrawal G P 2007 Nonlinear Fiber Optics (Massachusetts: Academic Press)

    [129]

    Kevrekidis P G, Frantzeskakis D, Carretero-Gonzalez R 2007 Emergent Nonlinear Phenomena in BoseEinstein Condensates: Theory and Experiment (New York: Springer Science and Business Media)

    [130]

    Kawaguchi Y, Ueda M 2012 Phys. Rep. 520 253Google Scholar

    [131]

    Gao P, Duan L, Zhao L C, et al. 2019 Chaos 29 083112Google Scholar

    [132]

    Duan L, Yang Z Y, Zhao L C, et al. 2016 J. Mod. Opt. 63 1397Google Scholar

    [133]

    Liu X S, Zhao L C, Duan L, et al. 2017 Chin. Phys. B 26 120503Google Scholar

    [134]

    Liu C, Yang Z Y, Zhao L C, et al. 2015 Ann. Phys. 362 130Google Scholar

    [135]

    Wang L, Li S, Qi F H 2016 Nonlinear Dyn. 85 389Google Scholar

    [136]

    Wang X, Liu C, Wang L 2017 Chaos 27 093106Google Scholar

    [137]

    Blanco-Redondo A, De Sterke C M, Sipe J E, et al. 2016 Nat. Commun. 7 10427Google Scholar

    [138]

    Daniel M, Kavitha L 2001 Phys. Rev. B 63 172302Google Scholar

    [139]

    Tao Y, He J S 2012 Phys. Rev. E 85 026601Google Scholar

    [140]

    Wang L H, Porsezian K, He J S 2013 Phys. Rev. E 87 053202Google Scholar

    [141]

    Ankiewicz A, Wang Y, Wabnitz S, et al. 2014 Phys. Rev. E 89 012907Google Scholar

    [142]

    Chowdury A, Kedziora D J, Ankiewicz A, et al. 2014 Phys. Rev. E 90 032922Google Scholar

    [143]

    Yang Y, Yan Z, Malomed B A 2015 Chaos 25 103112Google Scholar

    [144]

    Chowdury A, Kedziora D J, Ankiewicz A, et al. 2015 Phys. Rev. E 91 032928Google Scholar

    [145]

    Ankiewicz A, Kedziora D J, Chowdury A, et al. 2016 Phys. Rev. E 93 012206Google Scholar

    [146]

    Wang L, Zhang J H, Wang Z Q, et al. 2016 Phys. Rev. E 93 012214Google Scholar

    [147]

    Zhao L C, Ling L, Yang Z Y 2018 Phys. Rev. E 97 022218Google Scholar

    [148]

    Duan L, Yang Z Y, Gao P, et al. 2019 Phys. Rev. E 99 012216Google Scholar

    [149]

    Wen X Y, Yan Z, Boris A, Malomed 216 Chaos 26 123110

    [150]

    Wen X Y, Yan Z 2018 J. Math. Phys. 59 073511Google Scholar

    [151]

    Wen X Y, Yan Z 2017 Commun. Nonlinear. Sci. Numer. Simul. 43 311Google Scholar

    [152]

    Ohta Y, Yang J 2012 Phys. Rev. E 86 036604Google Scholar

    [153]

    Yang B, Chen Y 2018 Appl. Math. Lett. 82 43Google Scholar

    [154]

    Li M, Xu T, Meng D 2016 J. Phys. Soc. Jpn. 85 124001Google Scholar

    [155]

    Xu T, Li H, Zhang H, et al. 2017 Appl. Math. Lett. 63 88Google Scholar

    [156]

    Dai C Q, Zhu H P 2013 J. Opt. Soc. Am. B 30 3291Google Scholar

    [157]

    Chen J, Chen Y, Feng B F, Maruno K 2015 Phys. Lett. A 379 1510Google Scholar

    [158]

    Zhang X, Chen Y, Tang X 2018 Comput. Math. Appl. 76 1938Google Scholar

    [159]

    Qian C, Rao J G, Liu Y B, He J S 2016 Chin. Phys. Lett. 33 110201Google Scholar

    [160]

    Zhang X, Chen Y 2017 Commun. Nonlinear. Sci. Numer. Simul. 52 24Google Scholar

    [161]

    Liu Y K, and Li B 2017 Chin. Phys. Lett. 34 010202Google Scholar

    [162]

    Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J, Cuevas-Maraver J 2016 Phys. Rev. A 93 063623Google Scholar

    [163]

    Wang W, Kevrekidis P G, Carretero-Gonzalez R, Frantzeskakis D J 2016 Phys. Rev. A 93 023630Google Scholar

    [164]

    Rao J, Porsezian K, He J S 2017 Chaos 27 083115??Google Scholar

    [165]

    Rao J, Porsezian K, He J S, Kanna T 2018 Proc. R. Soc. A 474 20170627

    [166]

    Zeng L, Zeng J, Kartashov Y V, Malomed B A 2019 Opt. Lett. 44 1206Google Scholar

  • [1] Hu Zhi, Li Jin-Hua, Li Meng-Meng, Ma You-Qiao, Ren Hai-Dong. Stability analysis of Fermi-Pasta-Ulam-Tsingou phenomenon in nonlinear optical fibers. Acta Physica Sinica, 2024, 73(23): 235201. doi: 10.7498/aps.73.20241380
    [2] Zheng Zhou, Li Jin-Hua, Ma You-Qiao, Ren Hai-Dong. Influence of perturbation amplitude and perturbation frequency on Fermi-Pasta-Ulam-Tsingou recurrence phenomenon. Acta Physica Sinica, 2022, 71(18): 185201. doi: 10.7498/aps.71.20220945
    [3] Li Zai-Dong, Guo Qi-Qi. Rogue wave solution in ferromagnetic nanowires. Acta Physica Sinica, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [4] Pei Shi-Xin, Xu Hui, Sun Ting-Ting, Li Jin-Hua. Modulation instabilities in equilateral three-core optical fibers for isosceles-triangle symmetric continuous waves. Acta Physica Sinica, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [5] Chen Hai-Jun. Modulational instability of a two-dimensional Bose-Einstein condensate in an optical lattice through a variational approach. Acta Physica Sinica, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [6] Teng Fei, Xie Zheng-Wei. Modulational instabilities of two-component Bose-Einstein condensates in the optical lattices. Acta Physica Sinica, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [7] Mao Jie-Jian, Yang Jian-Rong. Nonlinear intermodulation waves of large-scale shallow water equations. Acta Physica Sinica, 2013, 62(13): 130205. doi: 10.7498/aps.62.130205
    [8] Zhang Li-Sheng, Deng Min-Yi, Kong Ling-Jiang, Liu Mu-Ren, Tang Guo-Ning. The cellular automaton model for the nonlinear waves in the two-dimensional excitable media. Acta Physica Sinica, 2009, 58(7): 4493-4499. doi: 10.7498/aps.58.4493
    [9] Huang Jin-Song, Chen Hai-Feng, Xie Zheng-Wei. Modulational instability of two-component dipolar Bose-Einstein condensates in an optical lattice. Acta Physica Sinica, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [10] Ding Wan-Shan, Xi Ling, Liu Lian-Hua. Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation. Acta Physica Sinica, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [11] Dai Xiao-Yu, Wen Shuang-Chun, Xiang Yuan-Jiang. Influence of dispersive magnetic permeability on modulation instability in metamaterials. Acta Physica Sinica, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [12] Zhan Jie-Min, Lin Dong, Li Yok-Sheng. Chebyshev generalized finite spectral method for linear and nonlinear waves. Acta Physica Sinica, 2007, 56(7): 3649-3654. doi: 10.7498/aps.56.3649
    [13] Zhao Xing-Dong, Xie Zheng-Wei, Zhang Wei-Ping. Nonlinear spin waves in a Bose condensed atomic chain. Acta Physica Sinica, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [14] Jia Wei-Guo, Shi Pei-Ming, Yang Xing-Yu, Zhang Jun-Ping, Fan Guo-Liang. Modulation instability of fiber Bragg gratings with Gaussian apodization. Acta Physica Sinica, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [15] Liu Zhi-Fang, Zhang Shan-Yuan. A nonlinear wave equation and exact periodic solutions in circular-rod waveguide. Acta Physica Sinica, 2006, 55(2): 628-633. doi: 10.7498/aps.55.628
    [16] Jia Wei-Guo, Shi Pei-Ming, Yang Xing-Yu, Zhang Jun-Ping, Fan Guo-Liang. Modulation instability of near frequency propagation regime in polarization-maintaining fibers. Acta Physica Sinica, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [17] Wu Kun, Wu Jian, Xu Han, Zeng He-Ping. Ultrashort laser pulse up-conversion amplification based on modulation instability. Acta Physica Sinica, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [18] Wen Lei, Yang Jian-Hu, Hu Li-Li. Determination of upconversion state lifetime and upconversion mechanisms of Er3+ in tellurite glasses. Acta Physica Sinica, 2004, 53(12): 4378-4381. doi: 10.7498/aps.53.4378
    [19] Li Qi-Liang, Zhu Hai-Dong, Tang Xiang-Hong, Li Cheng-Jia, Wang Xiao-Jun, Lin Li-Bin. Cross-phase modulational instability in fiber link wit h an active optical amplifier*. Acta Physica Sinica, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [20] Zhang Jie-Qiu, Liang Chang-Hong, Wang Geng-Guo, Zhu Jia-Zhen. Condition of Alfven Gauss wave-packet evolvement to solitons and criterion of Alfven wave modulation instability. Acta Physica Sinica, 2003, 52(4): 890-895. doi: 10.7498/aps.52.890
Metrics
  • Abstract views:  11188
  • PDF Downloads:  323
  • Cited By: 0
Publishing process
  • Received Date:  12 September 2019
  • Accepted Date:  31 October 2019
  • Available Online:  13 December 2019
  • Published Online:  05 January 2020

/

返回文章
返回