Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of perturbation amplitude and perturbation frequency on Fermi-Pasta-Ulam-Tsingou recurrence phenomenon

Zheng Zhou Li Jin-Hua Ma You-Qiao Ren Hai-Dong

Citation:

Influence of perturbation amplitude and perturbation frequency on Fermi-Pasta-Ulam-Tsingou recurrence phenomenon

Zheng Zhou, Li Jin-Hua, Ma You-Qiao, Ren Hai-Dong
PDF
HTML
Get Citation
  • Fermi-Pasta-Ulam-Tsingou recurrence (FPUT) phenomenon refers to the property of a multimode nonlinear system returning to the initial states after complex stages of evolution. The FPUT recurrence phenomenon closely links with modulation instability (MI) by employing the perturbed continuous waves as the initial condition. When the perturbation frequency is located inside the MI spectra, then the perturbed CWs are unstable and the perturbations will grow up with evolution. This nonlinear MI evolution results in the FPUT phenomenon. In this work, we explore in detail the effects of perturbation amplitude and perturbation frequency on the FPUT recurrence phenomena numerically, which has never been studied systematically, to the best of our knowledge. Using the results of our studies, we find that the perturbation amplitude can significantly affect the FPUT phenomenon. Firstly, the number of FPUT cycles is very sensitive to the perturbation amplitude. Large (small) perturbation amplitude can result in much more (much less) FPUT cycles. Secondly, very irregular (regular) FPUT wave evolution together with the corresponding spectra evolution can be observed at relatively large (small) values of perturbation amplitude, where the unequal (equal) distances are observed between adjacent maximum wave amplitudes spatially in the background of optical fibers. In contrast, the effects of perturbation frequency on the FPUT cycles are relatively minor, and the maximum FPUT cycles are observed at perturbation frequencies around the optimal modulation frequency generating the peak MI gain. However, the perturbation frequency can drastically affect the number of high-order sidebands excited at the distances of periodic maximum wave amplitude formation. We find that larger perturbation frequency leads to much fewer high-order sidebands. According to our studies, for observing FPUT conveniently and observing more FPUT cycles, the perturbation amplitude of the input signal should be as large as possible and the perturbation frequency should be around the optimum modulation frequency. We should also emphasize that the large perturbation amplitude results in irregular FPUT patterns with unequal distances between adjacent maximum wave amplitude formations spatially in the background of optical fibers, and large perturbation frequency results in much less high-order sidebands. Our results will provide very helpful information for the FPUT observation in experiment, and should arouse the interest of the readers in nonlinear physics.
      Corresponding author: Zheng Zhou, 20201217020@nuist.edu.cn ; Li Jin-Hua, lijinhua@nuist.edu.cn
    [1]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems Los Alamos, May 1, 1955 pLA-1940

    [2]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [3]

    Bagchi D 2021 Phys. Rev. E 104 054108Google Scholar

    [4]

    Friesecke G, Mikikits-Leitner A 2015 J. Dyn. Differ. Equ. 27 627Google Scholar

    [5]

    Pan Q, Yin H M, Chow K W 2021 J. Mar. Sci. Eng. 9 577Google Scholar

    [6]

    Van Simaeys G, Emplit P, Haelterman M 2002 J. Opt. Soc. Am. B 19 477Google Scholar

    [7]

    Conforti M, Mussot A, Kudlinski A, Trillo S, Akhmediev N 2020 Phys. Rev. A 101 023843Google Scholar

    [8]

    Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N 2021 Proc. Natl. Acad. Sci. USA 118 2019348118Google Scholar

    [9]

    Chen S C, Liu C, Yao X, Zhao L C, Akhmediev N 2021 Phys. Rev. E 104 024215Google Scholar

    [10]

    Akhmediev N, Korneev V 1986 Theor. Math. Phys. 69 1089Google Scholar

    [11]

    Ablowitz M J, Herbst B M 1990 Siam J. Appl. Math. 50 339Google Scholar

    [12]

    Wabnitz S, Wetzel B 2014 Phys. Lett. A 378 2750Google Scholar

    [13]

    Wang X, Dong Z, Deng Z 2021 Results Phys. 29 104715Google Scholar

    [14]

    Chabchoub A, Hoffmann N, Tobisch E, Waseda T, Akhmediev N 2019 Wave Motion 90 168Google Scholar

    [15]

    Yao X, Yang Z Y, Yang W L 2021 Nonlinear Dyn. 103 1035Google Scholar

    [16]

    Kuznetsov E A 2017 JETP Lett. 105 125Google Scholar

    [17]

    Erkintalo M, Genty G, Wetzel B, Dudley J M 2011 Phys. Lett. A 375 2029Google Scholar

    [18]

    Liu C, Chen S C, Yao X, Akhmediev N 2022 Physica D 433 133192Google Scholar

    [19]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [20]

    Liu C, Wu Y H, Chen S C, Yao X, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [21]

    Yao X, Liu C, Yang Z Y, Yang W L 2022 Phys. Rev. Res. 4 013246Google Scholar

    [22]

    Akhmediev N N 2001 Nature 413 267Google Scholar

    [23]

    Chin S A, Ashour O A, Belić M R 2015 Phys. Rev. E 92 063202Google Scholar

    [24]

    Grinevich P, Santini P 2018 Phys. Lett. A 382 973Google Scholar

    [25]

    Wabnitz S, Akhmediev N 2010 Opt. Commun. 283 1152Google Scholar

    [26]

    Fatome J, El-Mansouri I, Blanchet J L, Pitois S, Millot G, Trillo S, Wabnitz S 2013 J. Opt. Soc. Am. B 30 99Google Scholar

    [27]

    Erkintalo M, Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M, Genty G 2011 Phys. Rev. Lett. 107 253901Google Scholar

    [28]

    Soto-Crespo J M, Ankiewicz A, Devine N, Akhmediev N 2012 J. Opt. Soc. Am. B 29 1930Google Scholar

    [29]

    Mussot A, Kudlinski A, Droques M, Szriftgiser P, Akhmediev N 2014 Phys. Rev. X 4 011054Google Scholar

    [30]

    Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, Trillo S 2018 Nat. Photonics 12 303Google Scholar

    [31]

    Kimmoun O, Hsu H, Branger H, Li M, Chen Y, Kharif C, Onorato M, Kelleher E J, Kibler B, Akhmediev N 2016 SCI. REP-UK 6 1Google Scholar

    [32]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 5426Google Scholar

    [33]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 763Google Scholar

    [34]

    Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017Google Scholar

    [35]

    Goossens J W, Hafermann H, Jaouen Y 2019 Sci. Rep. 9 1Google Scholar

    [36]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Droques M, Mussot A 2020 Opt. Express 28 17773Google Scholar

    [37]

    Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M, Weiner A M 2016 Phys. Rev. Lett. 117 163901Google Scholar

    [38]

    Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin Heidelberg: Springer-Verlag) pp195–211

    [39]

    Yin H M, Chow K W 2021 Physica D 428 133033Google Scholar

  • 图 1  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 3.2 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10}\; {\text{rad/ps}} $

    Figure 1.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 3.2 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}} $.

    图 2  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 1.3 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.1, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}} $

    Figure 2.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT =1.3 m in typical single-core fibers for P0 = 1 kW, δ = 0. 1, $ \varOmega = {\varOmega _{\max }} = 5\sqrt {10}\; {\text{rad/ps}} $.

    图 3  非线性光纤中FPUT循环数随扰动振幅δ的演化

    Figure 3.  Variation of the number of FPUT cycle with the perturbation amplitude δ in nonlinear fibers.

    图 4  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 0.4 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.7, $\varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}}$

    Figure 4.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 0.4 m in typical single-core fibers for P0 = 1 kW, δ = 0.7, $\varOmega = {\varOmega _{\max }} = 5\sqrt {10} \;{\text{rad/ps}}$.

    图 5  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 3.4 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\text{c}}}/2 = 5\sqrt 5 \;{\text{rad/ps}} $

    Figure 5.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 3.4 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, $ \varOmega = {\varOmega _{\text{c}}}/2 = 5\sqrt 5 \;{\text{rad/ps}} $.

    图 6  高阶谐波数随扰动频率Ω (Ωc/2 < Ω < Ωc)的变化关系图

    Figure 6.  Variation of mode numbers of high-order sidebands with perturbation frequency Ω (Ωc/2 < Ω < Ωc).

    图 7  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 8.22 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, Ω = 22 rad/ps

    Figure 7.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 8.22 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, Ω = 22 rad/ps.

    图 8  非线性光纤中, 扰动平面波(a)和相应频谱(b)随传输距离的演化; 平面波演化至z1FPUT = 14.6 m处的波形(c)及频谱(d). 图中P0 = 1 kW, δ = 0.001, Ω = 22.3607 rad/ps

    Figure 8.  Evolution of perturbed plane wave (a) and corresponding spectra (b) with transmission distance; wave form (c) and corresponding spectra (d) at z1FPUT = 14.6 m in typical single-core fibers for P0 = 1 kW, δ = 0.001, Ω = 22.3607 rad/ps.

  • [1]

    Fermi E, Pasta P, Ulam S, Tsingou M 1955 Studies of the Nonlinear Problems Los Alamos, May 1, 1955 pLA-1940

    [2]

    Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240Google Scholar

    [3]

    Bagchi D 2021 Phys. Rev. E 104 054108Google Scholar

    [4]

    Friesecke G, Mikikits-Leitner A 2015 J. Dyn. Differ. Equ. 27 627Google Scholar

    [5]

    Pan Q, Yin H M, Chow K W 2021 J. Mar. Sci. Eng. 9 577Google Scholar

    [6]

    Van Simaeys G, Emplit P, Haelterman M 2002 J. Opt. Soc. Am. B 19 477Google Scholar

    [7]

    Conforti M, Mussot A, Kudlinski A, Trillo S, Akhmediev N 2020 Phys. Rev. A 101 023843Google Scholar

    [8]

    Vanderhaegen G, Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Mussot A, Onorato M, Trillo S, Chabchoub A, Akhmediev N 2021 Proc. Natl. Acad. Sci. USA 118 2019348118Google Scholar

    [9]

    Chen S C, Liu C, Yao X, Zhao L C, Akhmediev N 2021 Phys. Rev. E 104 024215Google Scholar

    [10]

    Akhmediev N, Korneev V 1986 Theor. Math. Phys. 69 1089Google Scholar

    [11]

    Ablowitz M J, Herbst B M 1990 Siam J. Appl. Math. 50 339Google Scholar

    [12]

    Wabnitz S, Wetzel B 2014 Phys. Lett. A 378 2750Google Scholar

    [13]

    Wang X, Dong Z, Deng Z 2021 Results Phys. 29 104715Google Scholar

    [14]

    Chabchoub A, Hoffmann N, Tobisch E, Waseda T, Akhmediev N 2019 Wave Motion 90 168Google Scholar

    [15]

    Yao X, Yang Z Y, Yang W L 2021 Nonlinear Dyn. 103 1035Google Scholar

    [16]

    Kuznetsov E A 2017 JETP Lett. 105 125Google Scholar

    [17]

    Erkintalo M, Genty G, Wetzel B, Dudley J M 2011 Phys. Lett. A 375 2029Google Scholar

    [18]

    Liu C, Chen S C, Yao X, Akhmediev N 2022 Physica D 433 133192Google Scholar

    [19]

    Che W J, Chen S C, Liu C, Zhao L C, Akhmediev N 2022 Phys. Rev. A 105 043526Google Scholar

    [20]

    Liu C, Wu Y H, Chen S C, Yao X, Akhmediev N 2021 Phys. Rev. Lett. 127 094102Google Scholar

    [21]

    Yao X, Liu C, Yang Z Y, Yang W L 2022 Phys. Rev. Res. 4 013246Google Scholar

    [22]

    Akhmediev N N 2001 Nature 413 267Google Scholar

    [23]

    Chin S A, Ashour O A, Belić M R 2015 Phys. Rev. E 92 063202Google Scholar

    [24]

    Grinevich P, Santini P 2018 Phys. Lett. A 382 973Google Scholar

    [25]

    Wabnitz S, Akhmediev N 2010 Opt. Commun. 283 1152Google Scholar

    [26]

    Fatome J, El-Mansouri I, Blanchet J L, Pitois S, Millot G, Trillo S, Wabnitz S 2013 J. Opt. Soc. Am. B 30 99Google Scholar

    [27]

    Erkintalo M, Hammani K, Kibler B, Finot C, Akhmediev N, Dudley J M, Genty G 2011 Phys. Rev. Lett. 107 253901Google Scholar

    [28]

    Soto-Crespo J M, Ankiewicz A, Devine N, Akhmediev N 2012 J. Opt. Soc. Am. B 29 1930Google Scholar

    [29]

    Mussot A, Kudlinski A, Droques M, Szriftgiser P, Akhmediev N 2014 Phys. Rev. X 4 011054Google Scholar

    [30]

    Mussot A, Naveau C, Conforti M, Kudlinski A, Copie F, Szriftgiser P, Trillo S 2018 Nat. Photonics 12 303Google Scholar

    [31]

    Kimmoun O, Hsu H, Branger H, Li M, Chen Y, Kharif C, Onorato M, Kelleher E J, Kibler B, Akhmediev N 2016 SCI. REP-UK 6 1Google Scholar

    [32]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 5426Google Scholar

    [33]

    Naveau C, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Mussot A 2019 Opt. Lett. 44 763Google Scholar

    [34]

    Pierangeli D, Flammini M, Zhang L, Marcucci G, Agranat A J, Grinevich P G, Santini P M, Conti C, DelRe E 2018 Phys. Rev. X 8 041017Google Scholar

    [35]

    Goossens J W, Hafermann H, Jaouen Y 2019 Sci. Rep. 9 1Google Scholar

    [36]

    Vanderhaegen G, Szriftgiser P, Kudlinski A, Conforti M, Trillo S, Droques M, Mussot A 2020 Opt. Express 28 17773Google Scholar

    [37]

    Bao C, Jaramillo-Villegas J A, Xuan Y, Leaird D E, Qi M, Weiner A M 2016 Phys. Rev. Lett. 117 163901Google Scholar

    [38]

    Agrawal G P 2000 Nonlinear Science at the Dawn of the 21st Century (Berlin Heidelberg: Springer-Verlag) pp195–211

    [39]

    Yin H M, Chow K W 2021 Physica D 428 133033Google Scholar

  • [1] Li Zai-Dong, Guo Qi-Qi. Rogue wave solution in ferromagnetic nanowires. Acta Physica Sinica, 2020, 69(1): 017501. doi: 10.7498/aps.69.20191352
    [2] Duan Liang, Liu Chong, Zhao Li-Chen, Yang Zhan-Ying. Quantitative relations between fundamental nonlinear waves and modulation instability. Acta Physica Sinica, 2020, 69(1): 010501. doi: 10.7498/aps.69.20191385
    [3] Pei Shi-Xin, Xu Hui, Sun Ting-Ting, Li Jin-Hua. Modulation instabilities in equilateral three-core optical fibers for isosceles-triangle symmetric continuous waves. Acta Physica Sinica, 2018, 67(5): 054203. doi: 10.7498/aps.67.20171650
    [4] Du Ying-Jie, Xie Xiao-Tao, Yang Zhan-Ying, Bai Jin-Tao. Dark soliton in the system of electromagnetically induced transparency. Acta Physica Sinica, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [5] Chen Hai-Jun. Modulational instability of a two-dimensional Bose-Einstein condensate in an optical lattice through a variational approach. Acta Physica Sinica, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [6] Zhang Yue, Zhuo Qing-Qing, Liu Hong-Xia, Ma Xiao-Hua, Hao Yue. Flat-roof of dynamic equilibrium phenomenon in static negative biase temperature instability effect on power metal-oxide-semiconductor field-effect transistor. Acta Physica Sinica, 2013, 62(16): 167305. doi: 10.7498/aps.62.167305
    [7] Teng Fei, Xie Zheng-Wei. Modulational instabilities of two-component Bose-Einstein condensates in the optical lattices. Acta Physica Sinica, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [8] Jia Wei-Guo, Zhou Yan-Yong, Han Yong-Ming, Bao Hong-Mei, Yang Sheng-Ji. Scalar modulation instability in photonic crystal fiber couplers. Acta Physica Sinica, 2009, 58(9): 6323-6329. doi: 10.7498/aps.58.6323
    [9] Huang Jin-Song, Chen Hai-Feng, Xie Zheng-Wei. Modulational instability of two-component dipolar Bose-Einstein condensates in an optical lattice. Acta Physica Sinica, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [10] Ding Wan-Shan, Xi Ling, Liu Lian-Hua. Simulation of the modulation instability in dual-core optical fiber based on complex Ginzburg-Landau equation. Acta Physica Sinica, 2008, 57(12): 7705-7711. doi: 10.7498/aps.57.7705
    [11] Dai Xiao-Yu, Wen Shuang-Chun, Xiang Yuan-Jiang. Influence of dispersive magnetic permeability on modulation instability in metamaterials. Acta Physica Sinica, 2008, 57(1): 186-193. doi: 10.7498/aps.57.186
    [12] Zhao Xing-Dong, Xie Zheng-Wei, Zhang Wei-Ping. Nonlinear spin waves in a Bose condensed atomic chain. Acta Physica Sinica, 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [13] Jia Wei-Guo, Shi Pei-Ming, Yang Xing-Yu, Zhang Jun-Ping, Fan Guo-Liang. Modulation instability of fiber Bragg gratings with Gaussian apodization. Acta Physica Sinica, 2007, 56(9): 5281-5286. doi: 10.7498/aps.56.5281
    [14] Jia Wei-Guo, Shi Pei-Ming, Yang Xing-Yu, Zhang Jun-Ping, Fan Guo-Liang. Modulation instability of near frequency propagation regime in polarization-maintaining fibers. Acta Physica Sinica, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
    [15] Wu Kun, Wu Jian, Xu Han, Zeng He-Ping. Ultrashort laser pulse up-conversion amplification based on modulation instability. Acta Physica Sinica, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [16] Li Qi-Liang, Zhu Hai-Dong, Tang Xiang-Hong, Li Cheng-Jia, Wang Xiao-Jun, Lin Li-Bin. Cross-phase modulational instability in fiber link wit h an active optical amplifier*. Acta Physica Sinica, 2004, 53(12): 4194-4201. doi: 10.7498/aps.53.4194
    [17] LI WEN-FEI, ZHANG FENG-SHOU. CHEMICAL INSTABILITY AND MECHANICAL INSTABILITY IN ASYMMETRIC NUCLEAR MATTER. Acta Physica Sinica, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [18] ZHAO YANG, YANG XIANG-LIN. MODULATION INSTABILITY IN NONLINEAR MONOMODE OPTICAL FIBERS. Acta Physica Sinica, 1989, 38(4): 541-547. doi: 10.7498/aps.38.541
    [19] HE XIAN-SHI. THE MODULATION INSTABILITY AND THE COLLAPSE PROCESS OF WAVE PACKET IN PLASMA. Acta Physica Sinica, 1983, 32(5): 627-639. doi: 10.7498/aps.32.627
    [20] XIA MENG-FEN, ZHOU RU-LING. INSTABILITIES DUE TO RUNAWAY ELECTRONS. Acta Physica Sinica, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
Metrics
  • Abstract views:  2473
  • PDF Downloads:  41
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2022
  • Accepted Date:  26 May 2022
  • Available Online:  08 September 2022
  • Published Online:  20 September 2022

/

返回文章
返回