Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evolution and Scale effect on the instability of a planar interface subjected to a Mach reflection wave configuration

LIANG Zhenghong ZHANG Zhen ZHANG Enlai ZOU Liyong

Citation:

Evolution and Scale effect on the instability of a planar interface subjected to a Mach reflection wave configuration

LIANG Zhenghong, ZHANG Zhen, ZHANG Enlai, ZOU Liyong
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • In order to better understand and predict the complex interface instability phenomena induced by non-uniform shock waves in practical engineering and scientific applications, a detailed investigation has been conducted on the interaction between a Mach reflection wave configuration and a planar gas interface. Particular attention is paid to the role of the Mach stem scale in governing the evolution of interface instability and the associated mechanisms of perturbation growth. Numerical simulations demonstrate that when the Mach reflection wave configuration interacts with the interface, the complex wave structures impart initial velocity perturbations onto the interface, thereby triggering instability. This process is further influenced by the non-uniform post-shock flow field, under which the initially perturbed interface gradually evolves into a concave cavity and subsequently into jet-like bubble structures. These patterns are notably distinct from the spike and bubble morphologies observed in classical Richtmyer–Meshkov instability. A systematic quantitative analysis of the perturbation amplitude reveals that the instability growth can be divided into two distinct stages: an initial linear growth stage followed by a nonlinear development stage. The transition between these stages is governed by interface deformation mechanisms, in particular the bending of the slip line intersecting the interface and the subsequent formation of the curl-up jet. When the shock strength and incidence angle of the Mach reflection configuration are kept constant, the Mach stem scale emerges as the decisive parameter controlling the characteristic time of slip line curling and jet development. Results show that during the linear stage, perturbation growth is primarily determined by shock strength and incidence angle, and is insensitive to the Mach stem scale. In contrast, during the nonlinear stage, the perturbation growth rate increases with larger Mach stem scales, highlighting the scale-dependent nature of the nonlinear stage. Furthermore, theoretical models were critically examined against numerical simulation results. While existing models can reasonably capture the velocity perturbations initially imprinted on the interface by the Mach reflection configuration, they are unable to incorporate the effects of Mach stem scale and the sustained driving influence of post-shock flow non-uniformities. This limitation underscores the need for improved theoretical descriptions. Overall, the findings provide new insights into the intrinsic coupling among shock strength, incidence angle, and Mach stem scale in determining the evolution of shock-induced interface instability. These insights not only advance the fundamental understanding of Richtmyer–Meshkov-type instabilities in non-classical regimes but also offer valuable references for the development of predictive theoretical models and for engineering applications such as inertial confinement fusion and high-speed propulsion systems.
  • [1]

    Richtmyer R D 1960 Commun. Pure. Appl. Math. 13 297

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [3]

    Smalyuk V A, Weber C R, Landen O L, Ali S, Bachmann B, Celliers P M, Dewald E L, Fernandez A, Hammel B A, Hall G, MacPhee A G, Pickworth L, Robey H F, Baker K L, Hopkins L F B, Casey D T, Clark D S, Alfonso N, Carlson L, … and others 2020 Plasma Phys. Controlled Fusion 62 014007

    [4]

    Chen Z, Yuan Y T, Wang L F, Tu S Y, Miao W Y, Wu J F, Ye W H, Deng K L, Hou L F, Wei M X, Li Y J, Yin C S, Dai Z S, Han X Y, Li Y S, Li Z Y, Zhang C, Pu Y D, Dong Y S, Yang D, Yang J M, Zheng W D, Zou S Y, Wang M, Ding Y K, Zhu S P, Zhang W Y, He X T 2024 Phys. Rev. Lett. 133(13) 135101

    [5]

    Sun J S 2009 Advances in Mechanics 39 460 (in Chinese)[孙锦山 2009 力学进展39 460]

    [6]

    Wang P, He A M, Shao J L, Sun H Q, Chen D W, Liu W B, Liu J 2018 Sci. Sin. Phys. Mech. Astron. 48 106 (in Chinese)[王裴, 何安民, 邵建立, 孙海权,陈大伟,刘文斌,刘军. 2018中国科学:物理学 力学 天文学 48 106]

    [7]

    Ren Z, Wang B, Xiang G, Zhao D, Zhang L 2019 Prog. Aeronaut. Sci 105 40

    [8]

    Dimotakis P E 2005 Annu. Rev. Fluid Mech. 37 329

    [9]

    Zou L Y, Wu Q, Li X Z 2020 Sci. Sin. Phys. Mech. Astron. 50 104702 (in Chinese)[邹立勇, 吴强, 李欣竹 2020 中国科学:物理学 力学 天文学50 104702]

    [10]

    Zhang E L, Liao S F, Zou L Y, Zhai Z G, Liu J H, Li X Z 2024 J. Fluid Mech. 984 A49

    [11]

    Zhou Y, Sadler J D, Hurricane O A 2025 Annu. Rev. Fluid Mech. 57 197

    [12]

    Zhou Y 2017 Phys. Rep. 720-722 1

    [13]

    Sun B B, Ye W H, Zhang W Y 2023 Acta Phys. Sin. 72 194701 (in Chinese)[孙贝贝, 叶文华, 张维岩 2023 物理学报 72 194701]

    [14]

    Zhang S B, Zhang H H, Chen Z H, Zheng C 2023 Acta Phys. Sin. 72 105202 (in Chinese)[张升博, 张焕好, 陈志华, 郑纯 2023 物理学报72 105202]

    [15]

    Zhai Z G, Zou L Y, WU Q, Luo X S 2018 Proc. Inst. Mech. Eng., Part C 232 283

    [16]

    Xu A G, Zhang D J, Gan Y B 2024 Front. Phys 19 42500

    [17]

    Yuan Y T, Tu S Y, Yin C S, Li J W, Dai Z S, Yang Z H, Hou L F, Zhan X Y, Yan J, Dong Y S, Pu Y D, Zou S Y, Yang J M, Miao W Y 2021 Acta Phys. Sin. 70 205203 (in Chinese)[袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇 2021物理学报70 205203]

    [18]

    Zhou Y 2024 Hydrodynamic Instabilities and Turbulence:Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz Mixing (Cambridge:Cambridge University Press) pp242-246

    [19]

    Thomas V A, Kares R J 2012 Phys. Rev. Lett. 109 075004

    [20]

    Ishizaki R, Nishihara K, Sakagami H, Ueshima Y 1996 Phys. Rev. E 53 R5592

    [21]

    Wang H, Zhai Z G, Luo X S 2022 J. Fluid Mech. 947 A42

    [22]

    Liu J H, Zou L Y, Cao R Y, Liao S F, Wang Y P 2014 Chinese Journal of Theoretical and Applied Mechanics 46 475 (in Chinese)[刘金宏, 邹立勇, 曹仁义, 廖深飞, 王彦平2014 力学学报46 475]

    [23]

    Zou L Y, Liu J H, Liao S F, Zheng X X, Zhai Z G, Luo X S 2017 Phys. Rev. E 95 013107

    [24]

    Liao S F, Zhang W B, Chen H, Zou L Y, Liu J H, Zheng X X 2019 Phys. Rev. E 99 013103

    [25]

    Wang Z, Wang T, Bai J S, Xiao J X 2019 J. Turbul. 20 481

    [26]

    He Y F, Peng N F, Li H F, Tian B L, Yang Y 2023 Phys. Rev. Fluids 8 63402.1

    [27]

    "BlastFoam:A Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation." Synthetik Applied Technologies LLC. 2020

    [28]

    Toro E F, Spruce M, Speares W 1994 Shock Waves 4 25

    [29]

    Li L F, Jin T, Zou L Y, Luo K, Fan J R 2023 Phys. Fluids 35 026104

    [30]

    Chen Y F, Jin T, Liang Z H, Zou L Y 2023 Phys. Fluids 35 114103

    [31]

    Bryson A E, Gross R W 1961 J. Fluid Mech. 10 1

    [32]

    Zhang E L, Liao S F, Zou L Y, Liu J H, Li X Z, Liang Z H 2024 Sci. Sin. Phys. Mech. Astron 54 50 (in Chinese)[张恩来, 廖深飞, 邹立勇, 刘金宏, 李欣竹, 梁正虹2024 中国科学:物理学 力学 天文学 54 50]

    [33]

    Huo X H, Wang L F, Tao Y S, Li Y J 2013 Acta Phys. Sin. 62 144705 (in Chinese)[霍新贺, 王立锋, 陶烨晟, 李英骏 2013 物理学报 62 144705]

    [34]

    Gao Y L, Jiang Z L 2009 Explosion and Shock Waves 29 143

    [35]

    Winkler K A, Chalmers J W, Hodson S W, Woodward P R, Zabusky N J 1987 Phys. Today 40 28

    [36]

    Henderson L F, Vasilev E I, Ben-Dor G, Elperin T 2003 J. Fluid Mech. 479 259

    [37]

    Liang Y, Ding J C, Zhai Z G, Si T, Luo X S 2017 Phys. Fluids 29 086101

    [38]

    Zhai Z G, Liang Y, Liu L L, Ding J C, Luo X S, Zou L Y 2018 Phys. Fluids 30 046104

    [39]

    Zou L Y, Al-Marouf M, Cheng W, Samtaney R, Ding J C, Luo X S 2019 J. Fluid Mech. 879 448

  • [1] WANG Xi, PENG Jianxiang, HU Xiaomian, YU Yuying, HU Jianbo, YIN Jianwei, PAN Hao, WU Zihui. High strain rate strength behavior of Richtmyer-Meshkov instability in Tin metal. Acta Physica Sinica, doi: 10.7498/aps.74.20250699
    [2] Zhang Sheng-Bo, Zhang Huan-Hao, Zhang Jun, Mao Yong-Jian, Chen Zhi-Hua, Shi Qi-Chen, Zheng Chun. Magnetic field suppression characteristics in interaction process between shock wave and light gas cylinder. Acta Physica Sinica, doi: 10.7498/aps.73.20231916
    [3] Zhang Sheng-Bo, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun. Influence of different interface component distributions on Richtmyer-Meshkov instability. Acta Physica Sinica, doi: 10.7498/aps.72.20222090
    [4] Dang Zi-Han, Zheng Chun, Zhang Huan-Hao, Chen Zhi-Hua. Evolution mechanism of double-layer heavy gas column interface with sinusoidal disturbance induced by convergent shock wave. Acta Physica Sinica, doi: 10.7498/aps.71.20221012
    [5] Yuan Yong-Teng, Tu Shao-Yong, Yin Chuan-Sheng, Li Ji-Wei, Dai Zhen-Sheng, Yang Zheng-Hua, Hou Li-Fei, Zhan Xia-Yu, Yan Ji, Dong Yun-Song, Pu Yu-Dong, Zou Shi-Yang, Yang Jia-Min, Miao Wen-Yong. Understanding effects of radiation from radiative shock on Richtmyer-Meshkov instability. Acta Physica Sinica, doi: 10.7498/aps.70.20210653
    [6] Sha Sha, Zhang Huan-Hao, Chen Zhi-Hua, Zheng Chun, Wu Wei-Tao, Shi Qi-Chen. Mechanism of longitudinal magnetic field suppressed Richtmyer-Meshkov instability. Acta Physica Sinica, doi: 10.7498/aps.69.20200363
    [7] Dong Guo-Dan, Guo Ze-Qing, Qin Jian-Hua, Zhang Huan-Hao, Jiang Xiao-Hai, Chen Zhi-Hua, Sha Sha. Numerical investigations of Richtmyer-Meshkov instability in different magnetic field configurations and the corresponding dynamic mode decomposition. Acta Physica Sinica, doi: 10.7498/aps.68.20190410
    [8] Dong Guo-Dan, Zhang Huan-Hao, Lin Zhen-Ya, Qin Jian-Hua, Chen Zhi-Hua, Guo Ze-Qing, Sha Sha. Numerical investigations of interactions between shock waves and triangular cylinders in magnetic field. Acta Physica Sinica, doi: 10.7498/aps.67.20181127
    [9] Li Dong-Dong, Wang Ge, Zhang Bin. Flow and mixing in shock-accelerated elliptic helium gas cylinder process. Acta Physica Sinica, doi: 10.7498/aps.67.20180879
    [10] Li Jun-Tao, Sun Yu-Tao, Hu Xiao-Mian, Ren Yu-Xin. Effect of vortex/wall interaction on turbulent mixing in the Richtmyer-Meshkov instability induced by shocked V shape interface. Acta Physica Sinica, doi: 10.7498/aps.66.235201
    [11] Lü Ming, Ning Zhi, Yan Kai. Comparative study on the spatial evolution of liquid jet under linear and nonlinear stability theories. Acta Physica Sinica, doi: 10.7498/aps.65.166801
    [12] Gu Yun-Qing, Mou Jie-Gang, Dai Dong-Shun, Zheng Shui-Hua, Jiang Lan-Fang, Wu Deng-Hao, Ren Yun, Liu Fu-Qing. Characteristics on drag reduction of bionic jet surface based on earthworm's back orifice jet. Acta Physica Sinica, doi: 10.7498/aps.64.024701
    [13] Chen Zhe, Wu Jiu-Hui, Chen Xin, Lei Hao, Hou Jie-Jie. Experimental study on screech tone mode switching of supersonic jet flowing through rectangular nozzles. Acta Physica Sinica, doi: 10.7498/aps.64.054703
    [14] SHA Sha, Chen Zhi-Hua, Zhang Qing-Bing. Numerical investigations on the interaction of shock waves with spherical SF6 bubbles. Acta Physica Sinica, doi: 10.7498/aps.64.015201
    [15] Sha Sha, Chen Zhi-Hua, Xue Da-Wen, Zhang Hui. Richtmyer-Meshkov instability induced by the interaction between shock wave and SF6 isosceles trapezoid cylinders. Acta Physica Sinica, doi: 10.7498/aps.63.085205
    [16] Zhang Qiang, Chen Xin, He Li-Ming, Rong Kang. An experimental study of rectangular under-expanded supersonic jets collision. Acta Physica Sinica, doi: 10.7498/aps.62.084706
    [17] Huo Xin-He, Wang Li-Feng, Tao Ye-Sheng, Li Ying-Jun. Bubble velocities in the nonlinear Rayleigh-Taylor and Richtmyer-Meshkov instabilities in non-ideal fluids. Acta Physica Sinica, doi: 10.7498/aps.62.144705
    [18] Sha Sha, Chen Zhi-Hua, Xue Da-Wen. The generation of jet and mixing induced by the interaction of shock wave with R22 cylinder. Acta Physica Sinica, doi: 10.7498/aps.62.144701
    [19] Tao Ye-Sheng, Wang Li-Feng, Ye Wen-Hua, Zhang Guang-Cai, Zhang Jian-Cheng, Li Ying-Jun. The bubble velocity research of Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Acta Physica Sinica, doi: 10.7498/aps.61.075207
    [20] He Feng, Yang Jing-Long, Shen Meng-Yu. . Acta Physica Sinica, doi: 10.7498/aps.51.1918
Metrics
  • Abstract views:  85
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  10 October 2025
  • /

    返回文章
    返回