-
In a capacitively coupled radio-frequency dusty plasma discharge, the groove structure on the lower electrode significantly modulates the electric potential distribution within the sheath region, thereby strongly influencing the collective dynamics of dust particles. Experimentally, when micrometer-sized dust particles are injected into the discharge chamber, a clearly stratified suspension forms above the potential well created by the electrode groove, exhibiting a characteristic 'bowl-shaped' cloud structure. The macroscopic dimensions of the dust cloud, such as its vertical thickness and radial expansion, vary noticeably with changes in RF power and gas pressure. Moreover, a dust void is observed in the central region of each particle layer; its diameter and evolution are jointly determined by the dust particle density, RF power, and gas pressure. A hybrid model, which couples a fluid description with the equation of motion for dust particles, indicates that the suspension and arrangement of dust particles are predominantly determined by a balance of axial and radial forces. The axial forces include the electrostatic force from the sheath electric field, the ion drag force, and gravity, while the radial forces primarily arise from the radial component of the electric field and the corresponding ion drag force. Further experimental results show that applying a negative DC bias to the RF electrode causes the levitation height of the dust particles to first increase and then decrease with increasing bias voltage, exhibiting a non-monotonic trend. This shift in levitation height can be regarded as a clear indicator of the transition of the plasma discharge from the α-mode to the γ-mode.
-
[1] Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges & Materials Processing 11 800
[2] Selwyn G S, Singh J, Bennett R S 1989 J. Vac. Sci. Technol. A 7 2758
[3] Wood B P, Lieberman M A, Lichtenberg A J 1991 IEEE Transactions on Plasma Science 19 619
[4] Wang K, Huang D, Feng Y 2019 Phys. Rev. E 99 063206
[5] Fedoseev A V, Sukhinin G I, Dosbolayev M K, Ramazanov T S 2015 Phys. Rev. E 92 023106
[6] Melzer A 2019 Physics of Dusty Plasmas:An Introduction (Berlin:Springer) p40
[7] Vasiliev M M, Petrov O F, Alekseevskaya A A, Ivanov, A S Vasilieva, E V 2020 Molecules 25 3375
[8] Chu J H, Lin I 1994 Phys. Rev. Lett 72 4009
[9] Caplan M E, Yaacoub D 2024 Phys. Rev. Lett 133 135301
[10] Hariprasad M G, Bandyopadhyay P, Arora G, Sen, A 2018 Physics of Plasmas 25 123704
[11] Carmichael C, Ortiz J M, Adamson P, Matthews L, Hyde T 2024 Phys. Rev. E 110 25205
[12] van de Wetering F M J H, Brooimans R J C, Nijdam S, Beckers J, Kroesen G M W 2015 J. Phys. D:Appl. Phys 48 35204
[13] Bailung Y, Deka T, Boruah A, Sharma S K, Pal A R, Chutia J, Bailung H Physics of Plasmas 25 053705
[14] Knapek C A, Mohr D P, Huber P 2024 Physics of Plasmas 31 063702
[15] Mulsow M, Himpel M, Melzer A 2017 Physics of Plasmas 24 123704
[16] Douglass A, Land V, Qiao K, Matthews L, Hyde T 2012 Physics of Plasmas 19 013707
[17] Lin J, Hashimoto K, Togashi R, Utegenov A, Henault M, Takahashi K 2019 Journal of Applied Physics 126 043302
[18] Iwashita S, Uchida G, Schulze J, Schüngel E, Hartmann P, Shiratani M, Donkó Z, Czarnetzki U 2012 Plasma Sources Sci. Technol 21 032001
[19] Iwashita S, Schüngel E, Schulze J, Hartmann P, Donkó Z, Uchida G, Koga K, Shiratani M, Czarnetzki U 2013 J. Phys. D:Appl. Phys 46 245202
[20] Chen Z Y, Song X Y, Liu Y, Tang, H Y, Huang F 2020 IEEE Transactions on Plasma Science 48 1283
[21] Takahashi K, Totsuji H 2019 IEEE Transactions on Plasma Science 47 4213
[22] Farokhi B, Hameditabar A 2012 Chinese Physics Letters 29 25201
[23] Yaroshenko V V, Khrapak S A, Morfill G E 2013 Physics of Plasmas 20 043703
[24] Jeong J, Kim Y G, Lee J, Kim Y 2024 Annual SEMI Advanced Semiconductor Manufacturing Conference Albany, New York, May 13-16, 2024 p1
[25] Batryshev D, Yerlanuly Y, Gabdullin M, Ramazanov T 2019 IEEE Transactions on Plasma Science 47 4209
[26] He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett 124 75001
[27] Ivanov A S, Pal A F, Ryabinkin A N, Serov A O, Starostin A V 2015 Russian Journal of General Chemistry 10 1134
[28] Doyle S J, Lafleur T, Gibson A R, Tian P, Kushner M, Dedrick J 2017 Plasma Sources Sci. Technol 26 125005
[29] Wang L, Hartmann P, Donko Z, Song Y H, Schulze J 2021 J. Vac. Sci. Technol 39 063004
[30] Piejak R B, Al-Kuzee J, Braithwaite N S J 2005 Plasma Sources Sci. Technol 14 734
[31] Liu G H, Liu Y X, Wen D Q, Wang Y N 2015 Plasma Sources Sci. Technol 24 034006
[32] Duan M Y, Jia W Z, Zhang Y Y, Zhang Y F, Song Y H 2023 Acta Phys. Sin. 72 165202 段蒙悦, 贾文柱, 张莹莹, 张逸凡, 宋远红 2023 物理学报 72 165202
[33] Gallagher A, Howling A A, Hollenstein C 2002 J. Appl. Phys 91 5571
[34] Graves D B, Daugherty J E, Kilgore M D, Porteous R K 1994 Plasma Sources Sci. Technol 3 433
[35] De Bleecker K,Bogaert A,Goedheer W 2006 Phys. Rev. E 73 026405
[36] Wang K, Huang D, Feng Y 2019 Phys. Rev. E 99 063206
[37] Schweigert I V, Alexandrov A L, Ariskin D A 2014 Plasma Chemistry and Plasma Processing 34 671-702
[38] Dahiya R P, Paeva G V, Stoffels W W, Stoffels E, Kroesen G M W, Avinash K, Bhattacharjee A 2002 Phys. Rev. Lett 89 125001
[39] Schulze J, Donkó Z, Derzsi A 2015 Plasma Sources Sci. Technol 24 015019
[40] Yamaguchi T, Komuro T, Koshimizu C, Takeda K, Kondo H, Ishikawa K, Sekine M, Hori M 2011 J. Phys. D:Appl. Phys 45 025203
[41] Liu G H, Liu Y X, Bai L S, Zhao K, Wang Y N 2018 Physics of Plasmas 25 023515
[42] Schulze J, Schüngel E, Donkó Z, Czarnetzki U 2010 J. Phys. D:Appl. Phys 43 124016
[43] Xiang Y J, Wang X K, Liu Y X, Wang Y N 2024 Plasma Science and Technology 26 55401
Metrics
- Abstract views: 48
- PDF Downloads: 0
- Cited By: 0