-
A kind of dual micro-holes-based in-fiber Fabry-Perot interferometer sensor is proposed in this paper. The theoretical model of the reflection spectrum of proposed sensor is established based on the interference among four light beams, where both the relationships of the spectrum intensity with the length of micro-hole, refractive index (RI) of medium in cavity, transmission loss and reflection loss, and the characteristic parameters of fiber are demonstrated, and the temperature and RI responses of reflection spectra are also simulated. Through machining two micro-holes in single-mode fiber with 193 nm excimer laser, we fabricate the proposed fiber sensor which can be used for measuring the multi-physical quantities, and the corresponding experiments are demonstrated simultaneously. The results show that the sensor has better linear responses to temperature and RI change, and the corresponding linearity is superior to 99%. Due to having two sets of different temperature and RI sensitivities (i.e.-0.172 nm/℃ and 1050.700 nm/RIU; 0.004 nm/℃ and 48.775 nm/RIU) and better linearity, this kind of sensor can be used for measuring the temperature, the ambient RI and even the simultaneous discrimination of temperature and ambient RI. The RI and temperature resolutions are 1.010-5 RIU and 0.2℃, respectively. Furthermore, the sensor can also be used for sensing the gas pressure, and its measurement accuracy can reach to. 3 kPa. Owing to its high sensitivity, stability, small volume and easy fabrication, the sensor will be widely used in sensing technology.
-
Keywords:
- fiber sensor /
- Fabry-Perot interferometer /
- temperature /
- refractive index
[1] Hideaki M, Daichi W, Hirotaka I 2013 Photonic Sens. 3 355
[2] Huang Y, Tian Z, Sun L P, Sun D, Li J, Ran Y, Guan B O 2015 Opt. Express 23 26962
[3] Pablo Z, Jesus M C, Carlos R Z, Ignacio R M, Francisco J A 2016 IEEE Sens. J. 16 4798
[4] Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813
[5] Li L, Xia Li, Xie Z H, Liu D M 2012 Opt. Express 20 11109
[6] Xu L, Jiang L, Wang S, Li B, Lu Y 2013 Appl. Opt. 52 2038
[7] Wang D, Cheng T H, Yeo Y K, Liu J G, Xu Z W, Wang Y X, Xiao G X 2010 Opt. Express 18 10343
[8] Li Z L, Liao C R, Liu S, Wang Y P 2017 Acta Phys. Sin. 66 070708 (in Chinese)[李自亮, 廖常锐, 刘申, 王义平 2017 物理学报 66 070708]
[9] Zhu Y Z, Cooper K L, Pickrell G R, Wang A 2006 J. Lightwave Technol. 24 861
[10] Antunes P F C, Domingues M F F, Alberto N J, Andre P S 2014 IEEE Photonics Technol. Lett. 26 78
[11] Jiang L, Zhao L J, Wang S M, Yang J P, Xiao H 2011 Opt. Express 19 17591
[12] Nesson S, Yu M A, Zhang X M, Hsieh A H 2008 J. Biomed. Opt. 13 044040
[13] Yang F, Tan Y Z, Jin W, Lin Y C, Qi Y, Ho H L 2016 Opt. Lett. 41 3025
[14] Dominguesa M F, Antunesa P, Albertob N, Friasa R, Ferreirac R A S, Andrd P 2016 Measurement 77 265
[15] Chen LX, Huang X G, Li J Y, Zhong Z B 2012 Rev. Sci. Instrum. 83 053113
[16] Rao Y J, Deng M, Duan D W, Zhu T 2008 Sens. Actuators A 148 33
[17] Xu B, Liu Y M, Wang D N, Li J Q 2016 J. Lightwave Technol. 34 4920
[18] Gao S, Jin L, Ran Y, Sun L P, Li J, Guan B O 2012 Opt. Express 20 18281
[19] Sun D, Ran Y, Wang G 2017 Sensors (Basel) 17 2559
[20] Xu B, Liu Y M, Wang D N, Jia D G, Jiang C 2017 IEEE Photonics J. 9 7102309
[21] Wang R H, Qiao X G 2015 IEEE Photonics Technol. Lett. 27 245
[22] Zhang Y, Yuan L, Lan X, Kaur A, Huang J, Xiao H 2013 Opt. Lett. 38 4609
[23] Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891
[24] Ma Q F, Ni K, Huang R 2017 J. OptoelectronicsLaser 28 123 (in Chinese)[马启飞, 倪凯, 黄然 2017 光电子激光 28 123]
[25] Liu J B, Wang D N, Zhang L 2016 J. Lightwave Technol. 34 4872
[26] Shi F F, Zhao C L, Xu B, Wang D N 2016 Acta Photonica Sin. 45 0306003 (in Chinese)[时菲菲, 赵春柳, 徐贲, 王东宁 2016 光子学报 45 0306003]
-
[1] Hideaki M, Daichi W, Hirotaka I 2013 Photonic Sens. 3 355
[2] Huang Y, Tian Z, Sun L P, Sun D, Li J, Ran Y, Guan B O 2015 Opt. Express 23 26962
[3] Pablo Z, Jesus M C, Carlos R Z, Ignacio R M, Francisco J A 2016 IEEE Sens. J. 16 4798
[4] Liao C R, Hu T Y, Wang D N 2012 Opt. Express 20 22813
[5] Li L, Xia Li, Xie Z H, Liu D M 2012 Opt. Express 20 11109
[6] Xu L, Jiang L, Wang S, Li B, Lu Y 2013 Appl. Opt. 52 2038
[7] Wang D, Cheng T H, Yeo Y K, Liu J G, Xu Z W, Wang Y X, Xiao G X 2010 Opt. Express 18 10343
[8] Li Z L, Liao C R, Liu S, Wang Y P 2017 Acta Phys. Sin. 66 070708 (in Chinese)[李自亮, 廖常锐, 刘申, 王义平 2017 物理学报 66 070708]
[9] Zhu Y Z, Cooper K L, Pickrell G R, Wang A 2006 J. Lightwave Technol. 24 861
[10] Antunes P F C, Domingues M F F, Alberto N J, Andre P S 2014 IEEE Photonics Technol. Lett. 26 78
[11] Jiang L, Zhao L J, Wang S M, Yang J P, Xiao H 2011 Opt. Express 19 17591
[12] Nesson S, Yu M A, Zhang X M, Hsieh A H 2008 J. Biomed. Opt. 13 044040
[13] Yang F, Tan Y Z, Jin W, Lin Y C, Qi Y, Ho H L 2016 Opt. Lett. 41 3025
[14] Dominguesa M F, Antunesa P, Albertob N, Friasa R, Ferreirac R A S, Andrd P 2016 Measurement 77 265
[15] Chen LX, Huang X G, Li J Y, Zhong Z B 2012 Rev. Sci. Instrum. 83 053113
[16] Rao Y J, Deng M, Duan D W, Zhu T 2008 Sens. Actuators A 148 33
[17] Xu B, Liu Y M, Wang D N, Li J Q 2016 J. Lightwave Technol. 34 4920
[18] Gao S, Jin L, Ran Y, Sun L P, Li J, Guan B O 2012 Opt. Express 20 18281
[19] Sun D, Ran Y, Wang G 2017 Sensors (Basel) 17 2559
[20] Xu B, Liu Y M, Wang D N, Jia D G, Jiang C 2017 IEEE Photonics J. 9 7102309
[21] Wang R H, Qiao X G 2015 IEEE Photonics Technol. Lett. 27 245
[22] Zhang Y, Yuan L, Lan X, Kaur A, Huang J, Xiao H 2013 Opt. Lett. 38 4609
[23] Quan M, Tian J, Yao Y 2015 Opt. Lett. 40 4891
[24] Ma Q F, Ni K, Huang R 2017 J. OptoelectronicsLaser 28 123 (in Chinese)[马启飞, 倪凯, 黄然 2017 光电子激光 28 123]
[25] Liu J B, Wang D N, Zhang L 2016 J. Lightwave Technol. 34 4872
[26] Shi F F, Zhao C L, Xu B, Wang D N 2016 Acta Photonica Sin. 45 0306003 (in Chinese)[时菲菲, 赵春柳, 徐贲, 王东宁 2016 光子学报 45 0306003]
Catalog
Metrics
- Abstract views: 6583
- PDF Downloads: 102
- Cited By: 0