-
Reliable numerical simulations for hypersonic flows require an accurate, robust and efficient numerical scheme. The low-dissipation shock-capturing methods often suffer various forms of shock wave instabilities when used to simulate hypersonic flow problems numerically. For the two-dimensional(2D) inviscid compressible Euler equations, the stability analysis of the low-dissipation HLLEM scheme is conducted. The odd and even perturbations are added to the initial state in the streamwise direction and the transverse direction respectively, and the evolution equations of perturbations are deduced to explore the mechanism of instability inherent in the HLLEM scheme. The results of stability analysis show that the perturbations of density and shear velocity in the flux transverse to the shock wave front are undamped. Due to the symmetry, the 2D Sedov blast wave problem is computed to prove the multidimensionality of the shock instability. In the one-dimensional case which is free from the instability, the undamped property of density perturbation is also existent but no shear velocity is found. The conclusion can be drawn as follows: the shock instability of HLLEM scheme is triggered by the perturbation growth of shear velocity in the flux transverse to the shock wave front. Based on the conclusion of stability analysis, the instability of HLLEM scheme is cured by adding the shear viscosity to the transverse flux. In order to avoid affecting the resolution of the shear layer due to the introduction of too high shear viscosity, two functions to detect the shock wave and the subsonic regimes are defined, so that the shear viscosity is only added to the transverse flux in the subsonic regime of the shock layer, while the rest of numerical fluxes are still computed by the original HLLEM scheme. The results of stability analysis and some challenging numerical test problems show that the modified HLLEM scheme not only retains the merits of the original HLLEM, such as, resolving contact discontinuity and shear wave accurately, but also has greatly improved its robustness, inhibiting the unstable phenomena from occurring effectively when computing the strong shock wave problems.
-
Keywords:
- hypersonic flow /
- low dissipation scheme /
- tangential dissipation /
- shock instability
[1] Tchuen G, Fogang F, Burtschell Y, Woafo P 2014 Comput. Phys. Commun. 185 479Google Scholar
[2] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 物理学报 63 084703Google Scholar
Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar
[3] Quirk J J 1994 Int. J. Numer. Methods Fluids 18 555Google Scholar
[4] Gressier J, Moschetta J M 2000 Int. J. Numer. Methods Fluids 33 313Google Scholar
[5] Dumbser M, Moschetta J M, Gressier J 2004 J. Comput. Phys. 197 647Google Scholar
[6] 谢文佳, 李桦, 潘沙, 田正雨 2015 物理学报 64 024702Google Scholar
Xie W J, Li H, Pan S, Tian Z Y 2015 Acta Phys. Sin. 64 024702Google Scholar
[7] Shen Z J, Yan W, Yuan G W 2016 J. Comput. Phys. 309 185Google Scholar
[8] Kim S D, Lee B J, Lee H J, Jeung I S 2009 J. Comput. Phys. 228 7634Google Scholar
[9] Wu H, Shen L J, Shen Z J 2010 Commun. Comput. Phys. 8 1264Google Scholar
[10] Shen Z J, Yan W, Yuan G W 2014 Commun. Comput. Phys. 15 1320Google Scholar
[11] Ren Y X 2003 Comput. Fluids 32 1379Google Scholar
[12] Rodionov A 2017 J. Comput. Phys. 345 308Google Scholar
[13] Rodionov A 2019 Comput. Fluids 190 77Google Scholar
[14] Rodionov A 2018 J. Comput. Phys. 361 50Google Scholar
[15] Chen S S, Yan C, Lin B X, Liu L Y, Yu J 2018 J. Comput. Phys. 373 662Google Scholar
[16] Simon S, Mandal J C 2018 Comput. Fluids 174 144Google Scholar
[17] Simon S, Mandal J C 2019 J. Comput. Phys. 378 477Google Scholar
[18] Xie W J, Li W, Li H, Tian Z Y, Pan S 2017 J. Comput. Phys. 350 607Google Scholar
[19] Fleischmann N, Adami S, Hu X Y, Adams N 2020 J. Comput. Phys. 401 109004Google Scholar
[20] Einfeldt B, Munz C D, Roe P L, Sjögreen B 1991 J. Comput. Phys. 92 273Google Scholar
[21] Chauvat Y, Moschetta J M, Gressier J 2005 Int. J. Numer. Methods Fluids 47 903Google Scholar
[22] Kitamura K, Roe P L, Ismail F 2009 AIAA J. 47 44Google Scholar
[23] Xu K, Li Z W 2001 Int. J. Numer. Methods Fluids 371
[24] Huang K, Wu H, Yu H, Yan D 2011 Int. J. Numer. Methods Fluids 65 1026Google Scholar
[25] Woodward P, Colella P 1984 J. Comput. Phys. 54 115Google Scholar
-
-
[1] Tchuen G, Fogang F, Burtschell Y, Woafo P 2014 Comput. Phys. Commun. 185 479Google Scholar
[2] 全鹏程, 易仕和, 武宇, 朱杨柱, 陈植 2014 物理学报 63 084703Google Scholar
Quan P C, Yi S H, Wu Y, Zhu Y Z, Chen Z 2014 Acta Phys. Sin. 63 084703Google Scholar
[3] Quirk J J 1994 Int. J. Numer. Methods Fluids 18 555Google Scholar
[4] Gressier J, Moschetta J M 2000 Int. J. Numer. Methods Fluids 33 313Google Scholar
[5] Dumbser M, Moschetta J M, Gressier J 2004 J. Comput. Phys. 197 647Google Scholar
[6] 谢文佳, 李桦, 潘沙, 田正雨 2015 物理学报 64 024702Google Scholar
Xie W J, Li H, Pan S, Tian Z Y 2015 Acta Phys. Sin. 64 024702Google Scholar
[7] Shen Z J, Yan W, Yuan G W 2016 J. Comput. Phys. 309 185Google Scholar
[8] Kim S D, Lee B J, Lee H J, Jeung I S 2009 J. Comput. Phys. 228 7634Google Scholar
[9] Wu H, Shen L J, Shen Z J 2010 Commun. Comput. Phys. 8 1264Google Scholar
[10] Shen Z J, Yan W, Yuan G W 2014 Commun. Comput. Phys. 15 1320Google Scholar
[11] Ren Y X 2003 Comput. Fluids 32 1379Google Scholar
[12] Rodionov A 2017 J. Comput. Phys. 345 308Google Scholar
[13] Rodionov A 2019 Comput. Fluids 190 77Google Scholar
[14] Rodionov A 2018 J. Comput. Phys. 361 50Google Scholar
[15] Chen S S, Yan C, Lin B X, Liu L Y, Yu J 2018 J. Comput. Phys. 373 662Google Scholar
[16] Simon S, Mandal J C 2018 Comput. Fluids 174 144Google Scholar
[17] Simon S, Mandal J C 2019 J. Comput. Phys. 378 477Google Scholar
[18] Xie W J, Li W, Li H, Tian Z Y, Pan S 2017 J. Comput. Phys. 350 607Google Scholar
[19] Fleischmann N, Adami S, Hu X Y, Adams N 2020 J. Comput. Phys. 401 109004Google Scholar
[20] Einfeldt B, Munz C D, Roe P L, Sjögreen B 1991 J. Comput. Phys. 92 273Google Scholar
[21] Chauvat Y, Moschetta J M, Gressier J 2005 Int. J. Numer. Methods Fluids 47 903Google Scholar
[22] Kitamura K, Roe P L, Ismail F 2009 AIAA J. 47 44Google Scholar
[23] Xu K, Li Z W 2001 Int. J. Numer. Methods Fluids 371
[24] Huang K, Wu H, Yu H, Yan D 2011 Int. J. Numer. Methods Fluids 65 1026Google Scholar
[25] Woodward P, Colella P 1984 J. Comput. Phys. 54 115Google Scholar
Catalog
Metrics
- Abstract views: 6756
- PDF Downloads: 97
- Cited By: 0