-
Recent work has rendered possible the formulation for the nonlinear propagation of pressure waves in liquids by using the generalized Navier - Stokes equations and the modified equations of state, with the heat transfer and fluid viscidity taken into consideration. And the nonlinear approximation solution of the second order term is obtained. The conclusion concerns the acoustic pressure, phase speed, attenuation, and velocity distribution function. When the amplitude of driving acoustic pressure is higher than the cavitation threshold of the host liquid, the cavitation occurs. The cavitation bubbles will prevent the sound field from spreading in the liquid, and the acoustic energy accumulates near the cavitation zone. So when studying the transmission characteristics of acoustic wave in the liquid, the cavitation attenuation must be considered. Note that the particularity of cavitation bubble movement, cavitation bubble vibration and viscous force are simulated under the initial driving sound. Through the analysis, it is found that the transmission of sound is influenced by the viscosity of the fluid, heat transfer, driving sound pressure (amplitude, frequency, duration) and cavitation bubble in liquid. The physical mechanism is that the higher driving pressure causes the cavitation to turn stronger, the acoustic loss to be faster, the sound propagation distance to be smalletr and the vibration of bubbles to transfer energy from the fundamental wave to harmonics. As a result, the stronger absorption from the liquid causes abnormal phenomena, and the output sound is lower finally. It shows that the nonlinear radial motion of cavitation bubble is mainly responsible for the sound intensity attenuation.
-
Keywords:
- nonlinear acoustics /
- Navier-Stokes equations /
- cavitation bubbles
[1] Louisnard O 2012 Ultrason. Sonochem. 19 56Google Scholar
[2] Louisnard O 2012 Ultrason. Sonochem. 19 66Google Scholar
[3] Ashokumar M 2011 Ultrason. Sonochem. 18 864Google Scholar
[4] Wang X, Chen W Z, Liang S D, Zhao T Y, Liang J F 2017 Phys. Rev. E 95 033118Google Scholar
[5] Wang X, Chen W Z, Y ang J, Liang S D 2018 J. Appl. Phys. 123 214904Google Scholar
[6] 陈伟中 2018 应用声学 37 675Google Scholar
Chen W Z 2018 J. Appl. Acoustics 37 675Google Scholar
[7] Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369Google Scholar
[8] Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732Google Scholar
[9] Vanhille C, Cleofé C P 2011 Ultrason. Sonochem. 18 679Google Scholar
[10] Thiessen R J, Cheviakov A F 2019 Commun. Nonliear. Sci. Numer. Simul. 73 244Google Scholar
[11] Xu F S, Midoux N, Li H Z, Hébrard G, Dietrich N 2019 Chem. Eng. Technol. 42 2321Google Scholar
[12] Zhang H H 2020 J. Acoust. Soc. Am. 147 399Google Scholar
[13] Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar
[14] Rayleigh L 1917 Philos. Mag. 34 94Google Scholar
[15] Smerera P 2002 J. Fluid Mech. 454 287Google Scholar
[16] 陈伟中 2014 声空化物理(北京: 科学出版社) 第58页
Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p58 (in Chinese)
[17] 钱祖文 2009 非线性声学 (北京: 科学出版社) 第29页
Qian Z W 2009 Nonliear Acoustics (Beijing: Science Press) p29 (in Chinese)
[18] 杜功焕, 朱哲民, 龚秀芬 2001 声学基础 (南京: 南京大学出版社) 第491页
Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Sound (Nanjing: Nanjing University Press) p491 (in Chinese)
[19] 钱祖文 1981 物理学报 30 442Google Scholar
Qian Z W 1981 Acta Phys. Sin. 30 442Google Scholar
[20] 沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar
[21] 沈壮志, 林书玉 2011 物理学报 60 084302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302Google Scholar
[22] Tomko J, O’Malley S M, Trout C, Naddeo J J, Jimenez R, Griepenburg J C, Soliman W, Bubb D M 2017 Colloids Surf., A 522 368Google Scholar
-
[1] Louisnard O 2012 Ultrason. Sonochem. 19 56Google Scholar
[2] Louisnard O 2012 Ultrason. Sonochem. 19 66Google Scholar
[3] Ashokumar M 2011 Ultrason. Sonochem. 18 864Google Scholar
[4] Wang X, Chen W Z, Liang S D, Zhao T Y, Liang J F 2017 Phys. Rev. E 95 033118Google Scholar
[5] Wang X, Chen W Z, Y ang J, Liang S D 2018 J. Appl. Phys. 123 214904Google Scholar
[6] 陈伟中 2018 应用声学 37 675Google Scholar
Chen W Z 2018 J. Appl. Acoustics 37 675Google Scholar
[7] Wijngaarden L V 1972 Ann. Rev. Fluid Mech. 4 369Google Scholar
[8] Commander K W, Prosperetti A 1989 J. Acoust. Soc. Am. 85 732Google Scholar
[9] Vanhille C, Cleofé C P 2011 Ultrason. Sonochem. 18 679Google Scholar
[10] Thiessen R J, Cheviakov A F 2019 Commun. Nonliear. Sci. Numer. Simul. 73 244Google Scholar
[11] Xu F S, Midoux N, Li H Z, Hébrard G, Dietrich N 2019 Chem. Eng. Technol. 42 2321Google Scholar
[12] Zhang H H 2020 J. Acoust. Soc. Am. 147 399Google Scholar
[13] Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar
[14] Rayleigh L 1917 Philos. Mag. 34 94Google Scholar
[15] Smerera P 2002 J. Fluid Mech. 454 287Google Scholar
[16] 陈伟中 2014 声空化物理(北京: 科学出版社) 第58页
Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) p58 (in Chinese)
[17] 钱祖文 2009 非线性声学 (北京: 科学出版社) 第29页
Qian Z W 2009 Nonliear Acoustics (Beijing: Science Press) p29 (in Chinese)
[18] 杜功焕, 朱哲民, 龚秀芬 2001 声学基础 (南京: 南京大学出版社) 第491页
Du G H, Zhu Z M, Gong X F 2001 Fundamentals of Sound (Nanjing: Nanjing University Press) p491 (in Chinese)
[19] 钱祖文 1981 物理学报 30 442Google Scholar
Qian Z W 1981 Acta Phys. Sin. 30 442Google Scholar
[20] 沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar
[21] 沈壮志, 林书玉 2011 物理学报 60 084302Google Scholar
Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302Google Scholar
[22] Tomko J, O’Malley S M, Trout C, Naddeo J J, Jimenez R, Griepenburg J C, Soliman W, Bubb D M 2017 Colloids Surf., A 522 368Google Scholar
Catalog
Metrics
- Abstract views: 10345
- PDF Downloads: 225
- Cited By: 0