Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles

Qinghim

Citation:

Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles

Qinghim,
PDF
HTML
Get Citation
  • In this paper, we observe and record the phenomenon of multi-bubble sonoluminescence in phosphoric acid solution which helium is injected into. It is found that a large number of cavitation bubbles are produced in the solution, which can form bubble groups with different shapes and structures, among them the spherical bubble group is a typical one. By the Rayleigh-Plesset equation of bubble group and any bubble in the group with the combination of van der Waals process equation, we study the variations of the bubble radius, temperature of the bubble, pressure pulse in the groups which are composed, respectively, of the bubbles with the same size and the same gas, the bubbles with the same size and different gases, the bubbles with different sizes and the same gas and the bubbles with different sizes and different gases. The results show that for the bubble group composed of the bubbles with the same size and the same gas and the bubble group composed of the bubbles with the same size and different gases, the gas contained in the bubble has a significant effect on the temperature inside the bubble, but has little effect on the bubble radius and the pressure pulse peak within the cluster. Bubble collapse depth of gas with low molecular weight is deeper than that of gas with high molecular weight, but the radius change of rebound stage is smaller than that of the latter. For the bubble group composed of the bubbles with different sizes and the same gas and the bubble group composed of the bubbles with different sizes and different gases, when the total number of bubbles in a bubble group is constant, for the case where there is only one large bubble in the group, the temperature in the large bubble is the highest, which can be higher than the temperature in a single bubble with the same size and the same gas; with the increase of the number of large bubbles in the group, the temperatures in the large and small bubbles both decrease rapidly: the temperature in the large bubbles approaches to the temperature in the bubbles of the bubble group composed of large bubbles with the same gas and the same size, and the temperature in the small bubble gradually approaches to the temperature in small bubble with the same gas under the radiation of many large bubbles. With the increase of the number of large bubbles, the peak value of the pressure pulse in the bubble group first decreases sharply to the inflection point, and then increases steadily to the peak value of the pressure pulse in the bubble group composed of large bubbles with the same gas and the same size. The proportion of large bubbles number in the bubble group has an important influence on the cavitation characteristics of the bubble group, only when the proportion of large bubbles reaches a certain value, can the bubbles of different sizes in the bubble group collapse at the same time, and this conclusion improve and perfect the previous conclusion. The results of this paper will provide some theoretical guidance and help to further explore the cavitation effect and luminescent mechanism of the bubble group.
      Corresponding author: , nrmdlbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019) and the Inner Mongolia Graduate Research Innovation Fund, China (Grant No. S2018112002Z)
    [1]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [2]

    Doinikov A A, Zavtrak S T 1998 J. Acoust. Soc. Am. 99 3849

    [3]

    Mettin R, Luther S, Ohl C D 1999 Ultrason. Sonochem. 6 25Google Scholar

    [4]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [5]

    Nasibullaeva E S, Akhatov I S 2005 Acoust. Phys. 51 705Google Scholar

    [6]

    沈壮志, 吴胜举 2012 物理学报 61 244301Google Scholar

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 244301Google Scholar

    [7]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [8]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar

    [9]

    苗博雅, 安宇 2015 物理学报 64 204301Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 204301Google Scholar

    [10]

    Zhang Y Y, Chen W Z, Zhang L L, Wang X, Chen Z 2019 Chin. Phys. Lett. 36 034301Google Scholar

    [11]

    清河美, 那仁满都拉 2019 物理学报 68 234302Google Scholar

    Qinghim, Naranmandula 2019 Acta Phys. Sin. 68 234302Google Scholar

    [12]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [13]

    Sugita N, Ando K, Sugiura T 2017 Ultrason. 77 160Google Scholar

    [14]

    Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X, Zhao G Y 2020 Chin. Phys. B 29 034303Google Scholar

    [15]

    Liang J F, An Y, Chen W Z 2019 Chin. Phys. Lett. 36 107801Google Scholar

    [16]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727Google Scholar

    [17]

    Yasui K 2001 Phys. Rev. E 63 035301Google Scholar

    [18]

    Storey B D, Szeri A J 2002 Phys. Rev. Lett. 88 074301Google Scholar

    [19]

    Lohse D, Breener M P, Dupont T F, Hilgenfeldt S, Johnston B 1997 Phys. Rev. Lett. 78 1359Google Scholar

    [20]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第297—298 页

    Chen W Z 2014 Sound Cavitation Physics (Beijing: Science Press) pp297–298 (in Chinese)

    [21]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318Google Scholar

    [22]

    Moshaii A, Faraji M, Tajik-Nezhad S 2010 Ultrason. Sonochem. 18 1148Google Scholar

    [23]

    Faraji M, Moshaii A 2012 Phys. Lett. A 376 2703Google Scholar

    [24]

    Didenko Y T, McNamara III W B, Suslick K S 2000 Phys. Rev. Lett. 84 777Google Scholar

    [25]

    Xu H, Suslick K S 2010 Phys. Rev. Lett. 104 244301Google Scholar

    [26]

    Cairós C, Mettin R 2017 Phys. Rev. Lett. 118 064301Google Scholar

    [27]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar

  • 图 1  实验观察到的注入氦气磷酸溶液中的泡群结构

    Figure 1.  Experimental observation of bubble structure in injected helium phosphoric acid solution.

    图 2  相同尺寸相同气体气泡组成的四种泡群的声空化特性 (a) 气泡半径变化; (b) 气泡径向速度变化; (c) 气泡崩溃及回弹阶段的半径放大图; (d) 泡群半径变化; (e) 泡群径向速度变化; (f) 气泡内温度变化; (g) 泡群内压力变化

    Figure 2.  Acoustic cavitation characteristics of four kinds of bubble groups composed of same size and same gas bubbles: (a) Change of bubbles radius; (b) change of bubbles radial velocity; (c) magnified figure of bubbles radius at the stage of collapse and rebound; (d) change of bubble group radius; (e) change of bubble groups radial velocity; (f) change of temperature in bubbles; (g) change of pressure in bubble groups.

    图 3  相同尺寸不同气体气泡组成的两种混合泡群的声空化特性 (a) 气泡半径变化; (b) 气泡径向速度变化; (c) 气泡崩溃及回弹阶段的半径放大图; (d) 泡群半径变化; (e) 泡群径向速度变化; (f) 气泡内温度变化; (g) 泡群内压力变化

    Figure 3.  Acoustic cavitation characteristics of two kinds of mixed bubble groups composed of same size and different gas bubbles: (a) Change of bubbles radius; (b) change of bubbles radial velocity; (c) magnified figure of bubbles radius at the stage of collapse and rebound; (d) change of bubble group radius; (e) change of bubble groups radial velocity; (f) change of temperature in bubbles; (g) change of pressure in bubble groups.

    图 4  不同尺寸相同气体气泡组成的两种混合泡群的声空化特性 (a) 大泡内最高温度随大气泡数的变化; (b) 小泡内最高温度随大气泡数的变化; (c) 泡群内压力脉冲峰值随大气泡数的变化

    Figure 4.  Acoustic cavitation characteristics of two kinds of mixed bubble groups composed of different size and same gas bubbles: (a) The change of the maximum temperature in the large bubble with the number of large bubbles; (b) the change of the maximum temperature in the small bubble with the number of large bubbles; (c) the change of the peak of pressure pulse with the number of large bubbles in a bubble groups.

    图 5  氦气泡群中, 大(红实线)、小(黑虚线)气泡的半径变化及对应的群内压力脉冲变化 (a1), (a2) $ N_{1} = 1 $; (b1), (b2) $ N_{1} = 24 $; (c1), (c2) $ N_{1} = 100 $; (d1), (d2) $ N_{1} = 400 $; (e1), (e2) $ N_{1} = 800 $

    Figure 5.  Radius change of large (red solid line) and small (black dotted line) bubbles in helium bubble group and corresponding pressure pulse change in the group: (a1), (a2) $ N_{1} = 1 $; (b1), (b2) $ N_{1} = 24 $; (c1), (c2) $ N_{1} = 100 $; (d1), (d2) $ N_{1} = 400 $; (e1), (e2) $ N_{1} = 800 $

    图 6  不同尺寸不同气体气泡组成的两种混合泡群的声空化特性 (a) 大泡内最高温度随大气泡数的变化; (b) 小泡内最高温度随大气泡数的变化; (c) 泡群内压力脉冲峰值随大气泡数的变化

    Figure 6.  Acoustic cavitation characteristics of two kinds of mixed bubble groups composed of different size and different gas bubbles: (a) The change of the maximum temperature in the large bubble with the number of large bubbles; (b) the change of the maximum temperature in the small bubble with the number of large bubbles; (c) the change of the peak of pressure pulse with the number of large bubbles in a bubble groups.

    表 1  75%磷酸溶液的相关物理参数[22]

    Table 1.  Physical parameters of 75% phosphoric acid[22].

    相关参数
    液体密度 $\rho$/kg·m–31575
    表面张力 $\sigma$/N·m–10.07987
    黏滞系数 $\eta$/Pa·s0.05111
    环境压强 $P_{0}$/atm1
    声速 $c$/m·s–11671
    环境温度 $T_{0}$/K273.15
    蒸气压 $P_{\rm v}$/Pa763
    DownLoad: CSV
  • [1]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [2]

    Doinikov A A, Zavtrak S T 1998 J. Acoust. Soc. Am. 99 3849

    [3]

    Mettin R, Luther S, Ohl C D 1999 Ultrason. Sonochem. 6 25Google Scholar

    [4]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [5]

    Nasibullaeva E S, Akhatov I S 2005 Acoust. Phys. 51 705Google Scholar

    [6]

    沈壮志, 吴胜举 2012 物理学报 61 244301Google Scholar

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 244301Google Scholar

    [7]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [8]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar

    [9]

    苗博雅, 安宇 2015 物理学报 64 204301Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 204301Google Scholar

    [10]

    Zhang Y Y, Chen W Z, Zhang L L, Wang X, Chen Z 2019 Chin. Phys. Lett. 36 034301Google Scholar

    [11]

    清河美, 那仁满都拉 2019 物理学报 68 234302Google Scholar

    Qinghim, Naranmandula 2019 Acta Phys. Sin. 68 234302Google Scholar

    [12]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [13]

    Sugita N, Ando K, Sugiura T 2017 Ultrason. 77 160Google Scholar

    [14]

    Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X, Zhao G Y 2020 Chin. Phys. B 29 034303Google Scholar

    [15]

    Liang J F, An Y, Chen W Z 2019 Chin. Phys. Lett. 36 107801Google Scholar

    [16]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727Google Scholar

    [17]

    Yasui K 2001 Phys. Rev. E 63 035301Google Scholar

    [18]

    Storey B D, Szeri A J 2002 Phys. Rev. Lett. 88 074301Google Scholar

    [19]

    Lohse D, Breener M P, Dupont T F, Hilgenfeldt S, Johnston B 1997 Phys. Rev. Lett. 78 1359Google Scholar

    [20]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第297—298 页

    Chen W Z 2014 Sound Cavitation Physics (Beijing: Science Press) pp297–298 (in Chinese)

    [21]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318Google Scholar

    [22]

    Moshaii A, Faraji M, Tajik-Nezhad S 2010 Ultrason. Sonochem. 18 1148Google Scholar

    [23]

    Faraji M, Moshaii A 2012 Phys. Lett. A 376 2703Google Scholar

    [24]

    Didenko Y T, McNamara III W B, Suslick K S 2000 Phys. Rev. Lett. 84 777Google Scholar

    [25]

    Xu H, Suslick K S 2010 Phys. Rev. Lett. 104 244301Google Scholar

    [26]

    Cairós C, Mettin R 2017 Phys. Rev. Lett. 118 064301Google Scholar

    [27]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar

  • [1] Liu Rui, Huang Chen-Yang, Wu Yao-Rong, Hu Jing, Mo Run-Yang, Wang Cheng-Hui. Structural stability analysis of spherical bubble clusters in acoustic cavitation fields. Acta Physica Sinica, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] Zuo Xin-Yi, Lei Zhao-Kang, Wu Yao-Rong, Wang Cheng-Hui. A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [3] Hou Sen, Hu Chang-Qing, Zhao Mei. Inversion method for bubble size distribution with sound attenuation. Acta Physica Sinica, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [4] Li Xiang, Yin Yi-Hui, Zhang Yuan-Zhang. Molecular dynamics simulation of helium bubble ultimate pressure in α-Fe. Acta Physica Sinica, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [5] Xu Ke, Xu Long, Zhou Guang-Ping. Dynamic characteristics of bubbles in spherical bubble group considering evaporation and condensation of water vapor. Acta Physica Sinica, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [6] Li Yuan, Peng Ping. Identification and tracking of different types of crystalline nucleiduring isothermal crystallization of amorphous Ag. Acta Physica Sinica, 2019, 68(7): 076401. doi: 10.7498/aps.68.20182188
    [7] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [8] Lyu Zi-Yao, Pan Yu-Jia, Wang Chang-Shun. Temperature dependent characteristics of photo-induced birefringence in different types of azo materials. Acta Physica Sinica, 2017, 66(24): 244203. doi: 10.7498/aps.66.244203
    [9] Wang Cheng-Hui, Mo Run-Yang, Hu Jing. Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound. Acta Physica Sinica, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [10] Yi Zhong, Wang Song, Tang Xiao-Jin, Wu Zhan-Cheng, Zhang Chao. Computer simulation on temperature-dependent internal charging of complex dielectric structure. Acta Physica Sinica, 2015, 64(12): 125201. doi: 10.7498/aps.64.125201
    [11] Wang Cheng-Hui, Mo Run-Yang, Hu Jing, Chen Shi. Coupled oscillation of bubbles in a spherical bubble cluster. Acta Physica Sinica, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [12] Ai Xing-Xing, Sun Ke-Hui, He Shao-Bo. Compound attractors between different chaotic systems. Acta Physica Sinica, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [13] Wang Cheng-Hui, Cheng Jian-Chun. Nonlinear acoustical response of multibubbles in elastic tube. Acta Physica Sinica, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [14] Hu Jing, Lin Shu-Yu, Wang Ceng-Hui, Li Jin. Study of resonance sound response for bubble cluster in ultrasonic field. Acta Physica Sinica, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [15] Shen Zhuang-Zhi, Wu Sheng-Ju. Dynamical behaviors of a bubble cluster under ultrasound field. Acta Physica Sinica, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [16] Zhang A-Man, Yao Xiong_Liang, Li Jia. The dynamics of bubbles. Acta Physica Sinica, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [17] HUO SU-GUO, NIE XIANG-FU, HAN BAO-SHAN. THE INFLUENCE OF TEMPERATURE ON ORDINARY HARD BUBBLES. Acta Physica Sinica, 1988, 37(10): 1703-1706. doi: 10.7498/aps.37.1703
    [18] HAN BAO-SHAN, XIU JIA-FA, NIE XIANG-FU, SUN HUI-LING, OUYANG FANG-LI, TANG GUI-DE. TEMPERATURE DEPENDENCE OF HARD BUBBLE FORMATION IN PULSE BIAS FIELDS. Acta Physica Sinica, 1988, 37(9): 1527-1533. doi: 10.7498/aps.37.1527
    [19] HAN BAO-SHAN, LIN JI-WU, LI BO-ZANG, NIE XIANG-FU, TANG GUI-DE. INFLUENCE OF IN-PLANE FIELDS ON THE FORMATION OF HARD BUBBLES. Acta Physica Sinica, 1986, 35(1): 130-135. doi: 10.7498/aps.35.130
    [20] HAN BAO-SHAN, LI BO-ZANG, NIE XIANG-FU, TANG GUI-DE. INFLUENCE OF CUBIC MAGNETOCRYSTALLINE ANISO-TROPY ON THE STABILITY OF STRIPE DOMAIN AND BUBBLES SUBJECTED TO AN IN-PLANE FIELD. Acta Physica Sinica, 1985, 34(2): 155-163. doi: 10.7498/aps.34.155
Metrics
  • Abstract views:  6737
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  14 March 2020
  • Accepted Date:  21 May 2020
  • Available Online:  12 June 2020
  • Published Online:  20 September 2020

/

返回文章
返回