Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temperature dependent characteristics of photo-induced birefringence in different types of azo materials

Lyu Zi-Yao Pan Yu-Jia Wang Chang-Shun

Citation:

Temperature dependent characteristics of photo-induced birefringence in different types of azo materials

Lyu Zi-Yao, Pan Yu-Jia, Wang Chang-Shun
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • At different temperatures, a semiconductor laser with a wavelength of 650 nm is used as probe light, and an Nd:YAG continuous laser with a wavelength of 532 nm is selected as pump light. The azo samples are placed between a pair of orthogonal polarizers with the vertical direction clockwise and counterclockwise 45 degrees, respectively. The polarization direction of the pump light is set to be the vertical direction. In order to reduce the effect of the stray light, a chopper is placed in the optical path of the probe light. The signal of photo-induced birefringence is recorded by a phase-locked amplifier (NF-LI5640). The photo-induced birefringences of the doped azo material, the azo polymer and the azo liquid crystal polymer are measured respectively, and the dynamic processes of photo-induced birefringence are fitted by a double e-index model. The experimental results show that with the influence of the pump light, photo-induced birefringences of the three types of azo materials rise rapidly at first and then gradually tend to reach their own saturation state because of the photo-induced cis and trans isomerism and the photo-induced molecular orientation properties of azo molecules. The photo-induced birefringence shows a tendency to increase at first and then decrease with the temperature increasing, which can be understood as a competitive mechanism. The photo-induced birefringence depends on the photo-induced orientation and irregular thermal motions of azo groups. In the range below the glass transition temperature of the samples, the increase of the temperature of samples contributes to the rearrangement of the azo molecules due to the influence of the pump light. When the temperature of the samples is higher than the glass transition temperature, molecular chains begin to move. The irregular thermal motions of azo components and polymer molecules are aggravated. This destroys the orientations of the polymer molecules and results in the drop of the photo-induced birefringence. Comparing the doped azo material with the azo polymer sample, the azo liquid crystal polymer sample exhibits not only a larger photo-birefringence, but also the photo-induced birefringence that does not change obviously after the pump light has been turned off, which means that the azo liquid crystal polymer sample has long optical storage properties. This shows that the azo liquid crystal polymer material is an ideal polarization-sensitive optical recording medium, which is expected to be used in the fields of optical storage, polarization holography and optical information processing.
      Corresponding author: Wang Chang-Shun, cswang@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574211).
    [1]

    Nersisyan S R, Tabiryan N V, Steeves D M, Kimball B R 2010 Proc. SPIE 7775 77750U

    [2]

    Huang S G, Gu W Y, Ma H Q 2004 Acta Phys. Sin. 53 4211 (in Chinese) [黄善国, 顾畹仪, 马海强 2004 物理学报 53 4211]

    [3]

    Yao B L, Ren Z W, Menke N, Wang Y L, Zheng Y, Lei M, Chen G F, Hampp N 2005 Appl. Opt. 44 7344

    [4]

    He T C, Wang C S, Pan X, Yang H, Lu G Y 2009 Opt. Lett. 34 665

    [5]

    Guo M, Xu Z D, Wang X G 2008 Opt. Mater. 31 412

    [6]

    Wang Y L, Yao B L, Chen Y, Fan M G, Zheng Y, Menke N M L, Lei M, Chen G F, Han Y, Yan Q Q, Meng X J 2004 Acta Phys. Sin. 53 66 (in Chinese) [王英丽, 姚保利, 陈懿, 樊美公, 郑媛, 门克内木乐, 雷铭, 陈国夫, 韩勇, 闫起强, 孟宪娟 2004 物理学报 53 66]

    [7]

    Zhou J L, Shen J, Yang J J, Ke Y, Wang K Y, Zhang Q J 2006 Opt. Lett. 31 1370

    [8]

    Provenzano C, Pagliusi P, Mazzulla A, Cipparrone G 2010 Opt. Lett. 35 1822

    [9]

    Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T 2000 J. Mater. Chem. 10 337

    [10]

    Qi S W, Yang X Q, Chen K, Zhang C P, Zhang L S, Wang X Y, Xu T, Liu Y L, Zhang G Y 2005 Acta Phys. Sin. 54 3189 (in Chinese) [祁胜文, 杨秀芹, 陈宽, 张春平, 张连顺, 王新宇, 许棠, 刘永亮, 张光寅 2005 物理学报 54 3189]

    [11]

    Ambrosio A, Maddalena P, Marrucci L 2013 Phys. Rev. Lett. 110 146102

    [12]

    Feldmann D, Maduar S R, Santer M, Vinogradova N, Santer S 2016 Sci. Rep. 6 36443

    [13]

    Wie J J, Shankar M R, White T J 2016 Nat. Commun. 7 13260

    [14]

    Sarkissian H, Serak S V, Tabiryan N V, Glebov L B, Rotar V, Zeldovich B Y 2006 Opt. Lett. 31 2248

    [15]

    Natansohn A, Rochon P 2002 Chem. Rev. 102 4139

    [16]

    Wei H Y, Cao L C, Xu Z F, He Q S, Jin G F, Gu C 2006 Opt. Express 14 5135

    [17]

    Ruiz U, Pagliusi P, Provenzano C, Shibaevand V P, Cipparrone G 2012 Adv. Funct. Mater. 22 2964

    [18]

    Ikeda T, Tsutsumi O 1995 Science 268 1873

    [19]

    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T 2006 Adv. Mater. 18 883

    [20]

    Pan S, Ni M, Mu B, Li Q, Hu X, Lin C, Chen D, Wang L Y 2015 Adv. Funct. Mater. 25 3571

    [21]

    Tian Y Q, Xie J L, Wang C S, Zhao Y Y, Fei H S 1999 Polymer 40 3835

    [22]

    Blanche P A, Lemaire C, Maertens C, Dubois P, Jérôme R 2000 J. Opt. Soc. Am. B 17 729

    [23]

    Si J H, Qiu J R, Guo J Y, Qian G D, Wang M Q, Hirao K 2003 Appl. Opt. 42 7170

    [24]

    Natansohn A, Rochon P 1998 Macromolecules 31 7960

    [25]

    Hore D, Natansohn A, Rochon P 1998 Can. J. Chem. 76 1648

  • [1]

    Nersisyan S R, Tabiryan N V, Steeves D M, Kimball B R 2010 Proc. SPIE 7775 77750U

    [2]

    Huang S G, Gu W Y, Ma H Q 2004 Acta Phys. Sin. 53 4211 (in Chinese) [黄善国, 顾畹仪, 马海强 2004 物理学报 53 4211]

    [3]

    Yao B L, Ren Z W, Menke N, Wang Y L, Zheng Y, Lei M, Chen G F, Hampp N 2005 Appl. Opt. 44 7344

    [4]

    He T C, Wang C S, Pan X, Yang H, Lu G Y 2009 Opt. Lett. 34 665

    [5]

    Guo M, Xu Z D, Wang X G 2008 Opt. Mater. 31 412

    [6]

    Wang Y L, Yao B L, Chen Y, Fan M G, Zheng Y, Menke N M L, Lei M, Chen G F, Han Y, Yan Q Q, Meng X J 2004 Acta Phys. Sin. 53 66 (in Chinese) [王英丽, 姚保利, 陈懿, 樊美公, 郑媛, 门克内木乐, 雷铭, 陈国夫, 韩勇, 闫起强, 孟宪娟 2004 物理学报 53 66]

    [7]

    Zhou J L, Shen J, Yang J J, Ke Y, Wang K Y, Zhang Q J 2006 Opt. Lett. 31 1370

    [8]

    Provenzano C, Pagliusi P, Mazzulla A, Cipparrone G 2010 Opt. Lett. 35 1822

    [9]

    Yamamoto T, Hasegawa M, Kanazawa A, Shiono T, Ikeda T 2000 J. Mater. Chem. 10 337

    [10]

    Qi S W, Yang X Q, Chen K, Zhang C P, Zhang L S, Wang X Y, Xu T, Liu Y L, Zhang G Y 2005 Acta Phys. Sin. 54 3189 (in Chinese) [祁胜文, 杨秀芹, 陈宽, 张春平, 张连顺, 王新宇, 许棠, 刘永亮, 张光寅 2005 物理学报 54 3189]

    [11]

    Ambrosio A, Maddalena P, Marrucci L 2013 Phys. Rev. Lett. 110 146102

    [12]

    Feldmann D, Maduar S R, Santer M, Vinogradova N, Santer S 2016 Sci. Rep. 6 36443

    [13]

    Wie J J, Shankar M R, White T J 2016 Nat. Commun. 7 13260

    [14]

    Sarkissian H, Serak S V, Tabiryan N V, Glebov L B, Rotar V, Zeldovich B Y 2006 Opt. Lett. 31 2248

    [15]

    Natansohn A, Rochon P 2002 Chem. Rev. 102 4139

    [16]

    Wei H Y, Cao L C, Xu Z F, He Q S, Jin G F, Gu C 2006 Opt. Express 14 5135

    [17]

    Ruiz U, Pagliusi P, Provenzano C, Shibaevand V P, Cipparrone G 2012 Adv. Funct. Mater. 22 2964

    [18]

    Ikeda T, Tsutsumi O 1995 Science 268 1873

    [19]

    Morikawa Y, Nagano S, Watanabe K, Kamata K, Iyoda T, Seki T 2006 Adv. Mater. 18 883

    [20]

    Pan S, Ni M, Mu B, Li Q, Hu X, Lin C, Chen D, Wang L Y 2015 Adv. Funct. Mater. 25 3571

    [21]

    Tian Y Q, Xie J L, Wang C S, Zhao Y Y, Fei H S 1999 Polymer 40 3835

    [22]

    Blanche P A, Lemaire C, Maertens C, Dubois P, Jérôme R 2000 J. Opt. Soc. Am. B 17 729

    [23]

    Si J H, Qiu J R, Guo J Y, Qian G D, Wang M Q, Hirao K 2003 Appl. Opt. 42 7170

    [24]

    Natansohn A, Rochon P 1998 Macromolecules 31 7960

    [25]

    Hore D, Natansohn A, Rochon P 1998 Can. J. Chem. 76 1648

  • [1] Zhao Wen-Li, Song Yu-Zhi, Ma Chao, Gao Feng, Meng Qing-Tian. Quantum dynamics study of reaction H+SiH using a new potential energy surface of SiH2(11A′). Acta Physica Sinica, 2024, 73(20): 203401. doi: 10.7498/aps.73.20240859
    [2] Zhao Wen-Li, Sun Feng-Wei, Zhang Hong, Wang Yong-Gang, Gao Feng, Meng Qing-Tian. Quantum dynamics studies of the $\rm D+SiD^+ \to D_2+Si^ +$ reaction. Acta Physica Sinica, 2022, 71(22): 228201. doi: 10.7498/aps.71.20221155
    [3] Chen Tian-Yu, Wang Chang-Shun, Pan Yu-Jia, Sun Li-Li. Recording optical vortices in azo polymer films by applying holographic method. Acta Physica Sinica, 2021, 70(5): 054204. doi: 10.7498/aps.70.20201496
    [4] Yuan Fang-Yuan, Zhu Zi-Liang. State-to-state dynamics of D + DBr reaction. Acta Physica Sinica, 2020, 69(11): 113401. doi: 10.7498/aps.69.20200321
    [5] Cai Wei, Xing Jun-Hui, Yang Zhi-Yong. Contributions to Verdet constant of magneto-optical materials. Acta Physica Sinica, 2017, 66(18): 187801. doi: 10.7498/aps.66.187801
    [6] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Menke Nei-Mu-Le, Yang Jun, Zhang Jun-Ping. Effect of Raman gain on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2015, 64(3): 034212. doi: 10.7498/aps.64.034212
    [7] Wang Mei-Jie, Jia Wei-Guo, Zhang Si-Yuan, Qiao Hai-Long, Yang Jun, Zhang Jun-Ping, Menke Nei-Mu-Le. Influence of Raman effect on the state of polarization evolution in a low-birefringence fiber. Acta Physica Sinica, 2014, 63(10): 104204. doi: 10.7498/aps.63.104204
    [8] Xu Guo-Liang, Liu Pei, Liu Yan-Lei, Zhang Lin, Liu Yu-Fang. A study of dynamic properties of exchange reaction H(D)+SH/SD by quasi-classical trajectory method. Acta Physica Sinica, 2013, 62(22): 223402. doi: 10.7498/aps.62.223402
    [9] Yang Yi-Ming, Wang Jia-Fu, Qu Shao-Bo, Xia Song, Wang Jun, Xu Zhuo, Bai Peng, Li Zhe. Negative refractive index metamaterials based on high-permittivity substrates and metallic structure: design, simulation and experiment. Acta Physica Sinica, 2011, 60(5): 054103. doi: 10.7498/aps.60.054103
    [10] Xie Ru-Sheng, Zhao You-Yuan. Orientation-enhanced and holographic storage of a novel azobenzene doped polymer. Acta Physica Sinica, 2011, 60(5): 054202. doi: 10.7498/aps.60.054202
    [11] Tian Yong, Pan Xu, Wang Chang-Shun, Zhang Xiao-Qiang, Zeng Yi. Two-dimensional polarization holographic recordings in azobenzene liquid-crystalline polymer thin films. Acta Physica Sinica, 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [12] Yan Feng-Ping, Li Yi-Fan, Wang Lin, Gong Tao-Rong, Liu Peng, Liu Yang, Tao Pei-Lin, Qu Mei-Xia, Jian Shui-Sheng. Design and characteristics of a near-elliptic inner cladding High birefringent polarization-stable photonic crystal fiber. Acta Physica Sinica, 2008, 57(9): 5735-5741. doi: 10.7498/aps.57.5735
    [13] Gao Peng, Yao Bao-Li, Han Jun-He, Chen Li-Ju, Wang Ying-Li, Lei Ming. Modulation of the azimuth of polarization of reconstruction beam on the diffraction efficiency of anisotropic gratings recorded in bacteriorhodopsin films by two parallel linearly polarized beams. Acta Physica Sinica, 2008, 57(5): 2952-2958. doi: 10.7498/aps.57.2952
    [14] Qi Sheng-Wen, Yang Xiu-Qin, Chen Kuan, Zhang Chun-Ping, Zhang Lian-Shun, Wang Xin-Yu, Xu Tang, Liu Yong-Liang, Zhang Guang-Yin. Photoinduced birefringence in an azo-dye-doped polymer. Acta Physica Sinica, 2005, 54(7): 3189-3193. doi: 10.7498/aps.54.3189
    [15] Ren Zhi-Wei, Yao Bao-Li, Menke Neimule, Wang Ying-Li, Zheng Yuan, Lei Ming, Chen Guo-Fu. Experimental study on polarization holographic high density optical data storage with bacteriorhodopsin film. Acta Physica Sinica, 2005, 54(6): 2699-2703. doi: 10.7498/aps.54.2699
    [16] Liang Jian-Chu, Wang Xiao-Sheng, Luo Duan-Bin, She Wei-Long, Wu Shui-Zhu, Zeng Fang, Tang Tian, Yao Sheng-Lan. Z-scan measurements on photoisomerization of azobenzene polymer and their theoretical interpretation. Acta Physica Sinica, 2004, 53(10): 3596-3600. doi: 10.7498/aps.53.3596
    [17] Wang Ying-Li, Yao Bao-Li, Chen Yi, Fan Mei-Gong, Zheng Yuan, Menke Nei-Mu-Le, Lei Ming, Chen Guo-Fu, Han Yong, Yan Qi-Qiang, Meng Xian-Juan. Polarization holographic image storage with indolylfulgimide. Acta Physica Sinica, 2004, 53(1): 66-69. doi: 10.7498/aps.53.66
    [18] LIANG ZHONG-CHENG, MING HAI, WANG PEI, ZHANG JIANG-YING, LONG YUN-ZE, XIA YONG, XIE JIAN-PING, ZHANG QI-JIN. NONLINEARLY OPTICAL-INDUCED BIREFRINGENCE IN AZO LIQUID CRYSTAL POLYMERS. Acta Physica Sinica, 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
    [19] YU MEI-WEN, ZHANG CUN-LIN. TRANSMISSION MATRIX OF POLARIZATION HOLOGRAMS IN THE PHOTO-INDUCED ANISOTROPIC RECORDING MATERIAL. Acta Physica Sinica, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [20] LASER CRYSTALS RESEARCH GROUP. THERMALLY INDUCED BIREFRINGENCE IN YAG RODS IN THE (001) DIRECTION. Acta Physica Sinica, 1977, 26(2): 93-99. doi: 10.7498/aps.26.93
Metrics
  • Abstract views:  5498
  • PDF Downloads:  169
  • Cited By: 0
Publishing process
  • Received Date:  14 June 2017
  • Accepted Date:  23 July 2017
  • Published Online:  05 December 2017

/

返回文章
返回