Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound

Wang Cheng-Hui Mo Run-Yang Hu Jing

Citation:

Acoustic response of bubbles inside a cylindrical cavitationbubble cluster generated by low-frequency ultrasound

Wang Cheng-Hui, Mo Run-Yang, Hu Jing
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • An ultrasonic horn can radiate a strong ultrasonic wave into viscous liquid contained in a tank or cylindrical cup, and bubble clusters could be generated by the high-intensity ultrasound in the liquid. In the bubble clusters, interaction of bubbles exists because of the secondary radiation of bubbles. Therefore, the oscillations of bubbles are coupled. On the other hand, the surrounding liquid pressure of the bubbles in the cluster is influenced by the oscillations of the bubbles, which induces a pressure gradient on the boundary of the cluster. Therefore, the oscillation of a bubble inside a cluster is contracted by the formation of the cluster and its structure evolution. In this paper, a cylindrical cavitation bubble cluster is considered as a mixture drop of bubbles and liquids, and the motion of the cluster boundary is proposed with a second two-dimensional (2D) Rayleigh equation related to the difference between the inner mixture pressure and the outside liquid pressure on the boundary. Based on the bubble cluster boundary dynamical equation, a new mathematical model is developed to describe the motion of cavitation bubbles inside a cylindrical cluster when the effects of coupled oscillation are included. Comparing the new model equation with the Rayleigh-Plesset equation of single bubble in unbounded liquid, it is easy to draw the conclusion that the contraction of oscillating bubbles is strengthened by the coupled oscillation of bubbles and the boundary motion. In the cylindrical cluster, the oscillation of bubbles is suppressed, and the natural frequency of bubbles is reduced. The proposed model is used as a basis for the numerical investigation of the nonlinear acoustic response of bubbles. The suppression of the bubble oscillation is strengthened by increasing the number density of bubbles. Comparing numerical curves of the maximum radius of the oscillating bubble, it is shown that there are local peaks which are related to the resonance response of bubbles. In some unstable parameter regions, the maximum radius of the oscillating bubble varies sensitively with the tiny change of the parameters. The parameter space distribution of the unstable regions is related to the initial bubble radius and driving frequency of ultrasound. According to the numerical results related to the parameters, such as bubble number density, initial radius, driving frequency and pressure amplitude of ultrasound, it is found that the unstable acoustic response could be amplified for bubbles of smaller initial radius driven by a low-frequency ultrasound. For cavitation bubbles of initial radii ranging from 1 m to 10 m in low-frequency ultrasonic field, the unstable regions of parameter spaces related to the evolution of maximum radius become broader with the decrease of bubble initial radius and driving frequency of ultrasound. Therefore, the tiny bubbles inside cylindrical clusters have stronger nonlinear properties and the change of the parameters in the dynamical model equation has greater influence on the tiny bubbles.
      Corresponding author: Wang Cheng-Hui, wangld001@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11204168, 11474191) and the Fundamental Research Fund for the Central Universities, China (Grant No. GK201603102).
    [1]

    Ying C F 2007 Sci. Sin.-Phys. Mech. Astron. 37 129 (in Chinese) [应崇福2007 中国科学: 物理学 力学 天文学 37 129]

    [2]

    Bjerknes V F K 1966 Field of Force (New York: Columbia University Press) pp45-47

    [3]

    Wang C H, Lin S Y 2011 Acta Acustica 36 325 (in Chinese) [王成会, 林书玉 2011 声学学报 36 325]

    [4]

    Doinikov A A, Zavtrak S T 1996 J. Acoust. Soc. Am. 99 3849

    [5]

    An Y 2011 Phys. Rev. E 84 066313

    [6]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727

    [7]

    Arora M, OhlC D, Lohse D 2007 J. Acoust. Soc. Am. 121 3432

    [8]

    Hansson A, Mrch K A 1980 J. Appl. Phys. 51 4651

    [9]

    Wu Y, Hong S, Zhang J, He Z, Guo W, Wang Q, Li G 2012 Int. J. Refract. Met. Hard Mater. 32 21

    [10]

    Verhaagen B, Rivas D F 2016 Ultrason. Sonochem. 29 619

    [11]

    Moussatov A, Granger C, Dubus B 2003 Ultrason. Sonochem. 10 191

    [12]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609

    [13]

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese) [王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301]

    [14]

    Brotchie A, Grieser F, Ashokkumar M 2009 Phys. Rev. Lett. 102 084302

    [15]

    Lee J, Ashokkumar M, Kentish S, Grieser F 2005 J. Am. Chem. Soc. 127 166810

    [16]

    Wang C H, Hu J, Cao H, Lin S Y, An S 2015 Sci. Sin.-Phys. Mech. Astron. 45 064301 (in Chinese) [王成会, 胡静, 曹辉, 林书玉, 安帅 2015 中国科学: 物理学 力学 天文学 45 064301]

    [17]

    Tu J, Swalwell J E, Giraud D, Cui W, Chen W, Matula T 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 955

    [18]

    Icaza-Herrera M, Fernandes F, Loske 2015 Ultrasonics 58 53

    [19]

    Wang C H, Lin S Y 2010 Acta Mech. Sin. 42 1050 (in Chinese) [王成会, 林书玉 2010 力学学报 42 1050]

  • [1]

    Ying C F 2007 Sci. Sin.-Phys. Mech. Astron. 37 129 (in Chinese) [应崇福2007 中国科学: 物理学 力学 天文学 37 129]

    [2]

    Bjerknes V F K 1966 Field of Force (New York: Columbia University Press) pp45-47

    [3]

    Wang C H, Lin S Y 2011 Acta Acustica 36 325 (in Chinese) [王成会, 林书玉 2011 声学学报 36 325]

    [4]

    Doinikov A A, Zavtrak S T 1996 J. Acoust. Soc. Am. 99 3849

    [5]

    An Y 2011 Phys. Rev. E 84 066313

    [6]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727

    [7]

    Arora M, OhlC D, Lohse D 2007 J. Acoust. Soc. Am. 121 3432

    [8]

    Hansson A, Mrch K A 1980 J. Appl. Phys. 51 4651

    [9]

    Wu Y, Hong S, Zhang J, He Z, Guo W, Wang Q, Li G 2012 Int. J. Refract. Met. Hard Mater. 32 21

    [10]

    Verhaagen B, Rivas D F 2016 Ultrason. Sonochem. 29 619

    [11]

    Moussatov A, Granger C, Dubus B 2003 Ultrason. Sonochem. 10 191

    [12]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609

    [13]

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese) [王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301]

    [14]

    Brotchie A, Grieser F, Ashokkumar M 2009 Phys. Rev. Lett. 102 084302

    [15]

    Lee J, Ashokkumar M, Kentish S, Grieser F 2005 J. Am. Chem. Soc. 127 166810

    [16]

    Wang C H, Hu J, Cao H, Lin S Y, An S 2015 Sci. Sin.-Phys. Mech. Astron. 45 064301 (in Chinese) [王成会, 胡静, 曹辉, 林书玉, 安帅 2015 中国科学: 物理学 力学 天文学 45 064301]

    [17]

    Tu J, Swalwell J E, Giraud D, Cui W, Chen W, Matula T 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58 955

    [18]

    Icaza-Herrera M, Fernandes F, Loske 2015 Ultrasonics 58 53

    [19]

    Wang C H, Lin S Y 2010 Acta Mech. Sin. 42 1050 (in Chinese) [王成会, 林书玉 2010 力学学报 42 1050]

  • [1] Lin Ji-Yan, Sun Jiao-Xia, Lin Shu-Yu. Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system. Acta Physica Sinica, 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [2] Zuo Xin-Yi, Lei Zhao-Kang, Wu Yao-Rong, Wang Cheng-Hui. A model of coupled oscillation of bubble cluster in liquid cavity wrapped by viscoelastic medium. Acta Physica Sinica, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [3] Huang Chen-Yang, Li Fan, Tian Hua, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong, Mo Run-Yang. Analysis of suppressive effect of large bubbles on oscillation of cavitation bubble in cavitation field. Acta Physica Sinica, 2023, 72(6): 064302. doi: 10.7498/aps.72.20221955
    [4] Xu Long, Wang Yao. Simulation of dynamic process of double bubble coupled acoustic cavitation. Acta Physica Sinica, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [5] Zhang Ying, Wu Wen-Hua, Wang Jian-Yuan, Zhai Wei. Mechanism of effect of stable cavitation on dendrite growth in ultrasonic field. Acta Physica Sinica, 2022, 71(24): 244303. doi: 10.7498/aps.71.20221101
    [6] Zheng Ya-Xin, Naranmandula. Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [7] Acoustic cavitation characteristics of bubble in compressible liquid. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211266
    [8] Qinghim. Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles. Acta Physica Sinica, 2020, 69(18): 184301. doi: 10.7498/aps.69.20200381
    [9] Qinghim, Naranmandula. Influence of large bubbles on cavitation effect of small bubbles in cavitation multi-bubbles. Acta Physica Sinica, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [10] Zhang Peng-Li, Lin Shu-Yu, Zhu Hua-Ze, Zhang Tao. Coupled resonance of bubbles in spherical cavitation clouds. Acta Physica Sinica, 2019, 68(13): 134301. doi: 10.7498/aps.68.20190360
    [11] Mo Run-Yang, Wang Cheng-Hui, Hu Jing, Chen Shi. Nonlinear acoustic response of two bubble oscillators. Acta Physica Sinica, 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [12] Wang De-Xin, Naranmandula. Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics. Acta Physica Sinica, 2018, 67(3): 037802. doi: 10.7498/aps.67.20171805
    [13] Zhao Tian-Tian, Lin Shu-Yu, Duan Yi-Lin. Suppression of lateral vibration in rectangular ultrasonic plastic welding tool based on phononic crystal structure. Acta Physica Sinica, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [14] Guo Ce, Zhu Xi-Jing, Wang Jian-Qing, Ye Lin-Zheng. Velocity analysis for collapsing cavitation bubble near a rigid wall under an ultrasound field. Acta Physica Sinica, 2016, 65(4): 044304. doi: 10.7498/aps.65.044304
    [15] Miao Bo-Ya, An Yu. Cavitation of two kinds of bubble mixtures. Acta Physica Sinica, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [16] Wang Cheng-Hui, Mo Run-Yang, Hu Jing, Chen Shi. Coupled oscillation of bubbles in a spherical bubble cluster. Acta Physica Sinica, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [17] Hu Jing, Lin Shu-Yu, Wang Ceng-Hui, Li Jin. Study of resonance sound response for bubble cluster in ultrasonic field. Acta Physica Sinica, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [18] Zhang Jun, Zeng Xin-Wu, Chen Dan, Zhang Zhen-Fu. Generation of negative pressure of underwater intensive acoustic pulse and cavitation bubble dynamics. Acta Physica Sinica, 2012, 61(18): 184302. doi: 10.7498/aps.61.184302
    [19] Wang Cheng-Hui, Cheng Jian-Chun. Forced oscillations of gaseous bubbles in microtubules. Acta Physica Sinica, 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [20] Liu Hai-Jun, An Yu. Pressure distribution outside a single cavitation bubble. Acta Physica Sinica, 2004, 53(5): 1406-1412. doi: 10.7498/aps.53.1406
Metrics
  • Abstract views:  6481
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2016
  • Accepted Date:  06 May 2016
  • Published Online:  05 July 2016

/

返回文章
返回