Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics

Wang De-Xin Naranmandula

Citation:

Theoretical study of coupling double-bubbles ultrasonic cavitation characteristics

Wang De-Xin, Naranmandula
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • When the distances between bubbles are small enough, the pressure acting on the bubble is not the same as the external driving pressure, because of the radiation pressure wave of the neighboring bubbles. The force between two bubbles due to the bubble-radiated pressure waves by the neighboring bubbles is called the secondary Bjerknes force. Considering the bubble-radiated pressure waves and using the modified Keller-Miksis equation and van der Waals equation, the changes of the radius, the secondary Bjerknes force and the temperature of the double bubbles, which have different sizes, interspaces in between, and noble gases, in the process of ultrasonic cavitation are calculated. The calculations are based on the assumption that the locations of double bubbles stay unchanged in the oscillation process and their shapes always keep spherical. The double bubbles can also oscillate synchronously under the influence of the driving ultrasonic field. Because the sound propagation speed in water extremely fast, the time-delay effect on the secondary Bjerknes force is neglected. From the calculated results, the following conclusions can be drawn: when the sizes of double bubbles are different, the smaller bubble is more restrained and the temperature change is larger. When the sizes of double bubbles are the same, the Bjerknes force is negative, indicating that the coupled double bubbles are attracted to each other during the oscillation and the Bjerknes force has two radial oscillations in one driving period. As the interspace between double bubbles increases from 100 m to 1 cm, the secondary Bjerknes force decreases from 10-4 N to 10-8 N, indicating that the interaction between double bubbles increases with the decreasing of the distance between the bubbles. The coupling double bubbles with different noble gases have only a small difference in maximum radius in the stage of expansion, but have different oscillation patterns clearly in the stage of rebound. This is because the bubble expansion process can be seen as an isothermal process, the effective polytropic exponent is approximately equal to 1. The collapse process can be regarded as an adiabatic process, so the effective polytropic exponent of noble gas with large molecules changes rapidly, and the influence of the oscillation of the bubbles becomes large. Our work provides a theoretical basis for establishing the acoustic cavitation model of different-number bubbles, and calculating the interaction force between different-number bubbles.
      Corresponding author: Naranmandula, nrmdbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019).
    [1]

    Rayleigh L 1917 Philos. Mag. 34 94

    [2]

    Plesset M S 1949 J. Appl. Mech. 16 277

    [3]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [4]

    Kyuichi Y 2002 J. Acoust. Soc. Am. 112 1405

    [5]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [6]

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese) [王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301]

    [7]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924

    [8]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [9]

    Pu Z Q, Zhang W, Shi K R, Zhang J H, Wu Y L 2005 J. Tsinghua Univ. (Science and Technology) 45 1450 (in Chinese) [蒲中奇, 张伟, 施克仁, 张俊华, 吴玉林 2005 清华大学学报: 自然科学版 45 1450]

    [10]

    Shirota M, Yamashita K, Inamura T 2012 AIP Conf. Proc. 1474 155

    [11]

    Zhang W J, An Y 2013 Tech. Acoust. 32 125 (in Chinese) [张文娟, 安宇 2013 声学技术 32 125]

    [12]

    Rasoul A, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316

    [13]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 467

    [14]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 501

    [15]

    Matula T J, Cordry S M, Roy R A 1997 J. Acoust. Soc. Am. 102 1522

    [16]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese) [马艳, 林书玉, 鲜晓军 2016 物理学报 65 014301]

    [17]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta Phys. Sin. 62 134303 (in Chinese) [胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [18]

    Ma Y, Lin S Y, Xu J, Tang Y F 2017 Acta Phys. Sin. 66 014302 (in Chinese) [马艳, 林书玉, 徐洁, 唐一璠 2017 物理学报 66 014302]

    [19]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318

    [20]

    Hiller R, Putterman S J, Barber B P 1992 Phys. Rev. Lett. 69 1182

    [21]

    Zhou C, Chen W Z, Cui W C 2013 Acta Phys. Sin. 62 087805 (in Chinese) [周超, 陈伟中, 崔炜程 2013 物理学报 62 087805]

    [22]

    Gheshlaghi M 2015 Ext. J. Appl. Sci. 3 257

  • [1]

    Rayleigh L 1917 Philos. Mag. 34 94

    [2]

    Plesset M S 1949 J. Appl. Mech. 16 277

    [3]

    Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [4]

    Kyuichi Y 2002 J. Acoust. Soc. Am. 112 1405

    [5]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309

    [6]

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese) [王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301]

    [7]

    Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924

    [8]

    Lu Y G, Wu X H 2011 Acta Phys. Sin. 60 046202 (in Chinese) [卢义刚, 吴雄慧 2011 物理学报 60 046202]

    [9]

    Pu Z Q, Zhang W, Shi K R, Zhang J H, Wu Y L 2005 J. Tsinghua Univ. (Science and Technology) 45 1450 (in Chinese) [蒲中奇, 张伟, 施克仁, 张俊华, 吴玉林 2005 清华大学学报: 自然科学版 45 1450]

    [10]

    Shirota M, Yamashita K, Inamura T 2012 AIP Conf. Proc. 1474 155

    [11]

    Zhang W J, An Y 2013 Tech. Acoust. 32 125 (in Chinese) [张文娟, 安宇 2013 声学技术 32 125]

    [12]

    Rasoul A, Rezaee N, Ebrahimi H, Mirheydari M 2010 Phys. Rev. E 82 016316

    [13]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 467

    [14]

    Pelekasis N A, Tsanopoulos J A 1993 J. Fluid Mech. 254 501

    [15]

    Matula T J, Cordry S M, Roy R A 1997 J. Acoust. Soc. Am. 102 1522

    [16]

    Ma Y, Lin S Y, Xian X J 2016 Acta Phys. Sin. 65 014301 (in Chinese) [马艳, 林书玉, 鲜晓军 2016 物理学报 65 014301]

    [17]

    Hu J, Lin S Y, Wang C H, Li J 2013 Acta Phys. Sin. 62 134303 (in Chinese) [胡静, 林书玉, 王成会, 李锦 2013 物理学报 62 134303]

    [18]

    Ma Y, Lin S Y, Xu J, Tang Y F 2017 Acta Phys. Sin. 66 014302 (in Chinese) [马艳, 林书玉, 徐洁, 唐一璠 2017 物理学报 66 014302]

    [19]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318

    [20]

    Hiller R, Putterman S J, Barber B P 1992 Phys. Rev. Lett. 69 1182

    [21]

    Zhou C, Chen W Z, Cui W C 2013 Acta Phys. Sin. 62 087805 (in Chinese) [周超, 陈伟中, 崔炜程 2013 物理学报 62 087805]

    [22]

    Gheshlaghi M 2015 Ext. J. Appl. Sci. 3 257

  • [1] Qi Hai-Dong, Wang Jing, Chen Zhong-Jun, Wu Zhong-Hua, Song Xi-Ping. Influence of temperature on lattice constants of martensite and ferrite. Acta Physica Sinica, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [2] Wang Yu-Hao, Liu Jian-Guo, Xu Liang, Liu Wen-Qing, Song Qing-li, Jin Ling, Xu Han-Yang. Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 2021, 70(7): 073201. doi: 10.7498/aps.70.20201672
    [3] Qi Ke-Wu, Zhao Yu-Hong, Guo Hui-Jun, Tian Xiao-Lin, Hou Hua. Phase field crystal simulation of the effect of temperature on low-angle symmetric tilt grain boundary dislocation motion. Acta Physica Sinica, 2019, 68(17): 170504. doi: 10.7498/aps.68.20190051
    [4] Ma Yan, Lin Shu-Yu, Xu Jie, Tang Yi-Fan. Influnece of nonspherical effects on the secondary Bjerknes force in a strong acoustic field. Acta Physica Sinica, 2017, 66(1): 014302. doi: 10.7498/aps.66.014302
    [5] Deng Chun-Yu, Hou Shang-Lin, Lei Jing-Li, Wang Dao-Bin, Li Xiao-Xiao. Simultaneous measurement on strain and temperature via guided acoustic-wave Brillouin scattering in single mode fibers. Acta Physica Sinica, 2016, 65(24): 240702. doi: 10.7498/aps.65.240702
    [6] Zhu Jin-Rong, Fan Lü-Chao, Chao Su, Hu Jing-Guo. Influences of material defects and temperature on current-driven domain wall mobility. Acta Physica Sinica, 2016, 65(23): 237501. doi: 10.7498/aps.65.237501
    [7] Ma Yan, Lin Shu-Yu, Xian Xiao-Jun. Volume pulsation and scattering of bubbles under the second Bjerknes force. Acta Physica Sinica, 2016, 65(1): 014301. doi: 10.7498/aps.65.014301
    [8] Tang Yuan-He, Wang Shu-Hua, Cui Jin, Xu Ying, Mei Yi-Feng, Li Cun-Xia. Study on the forward of mashgas CO temperature and concentration by the remote passive measurement. Acta Physica Sinica, 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [9] Sun Su-Rong, Wang Hai-Xing. A comparison of interatomic potentials for noble gases. Acta Physica Sinica, 2015, 64(14): 143401. doi: 10.7498/aps.64.143401
    [10] Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang. Influence of temperature change on conductive characteristics of titanium oxide memristor. Acta Physica Sinica, 2014, 63(9): 098402. doi: 10.7498/aps.63.098402
    [11] Jiang Zhong-Ying, Zhang Guo-Liang, Ma Jing, Zhu Tao. Lipid exhange between membranes: effects of temperature and ionic strength. Acta Physica Sinica, 2013, 62(1): 018701. doi: 10.7498/aps.62.018701
    [12] Yin Ming, Zhou Shou-Huan, Feng Guo-Ying. Tunable high efficiency broadband second-harmonic conversion in quasi-phase matching. Acta Physica Sinica, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [13] Li Yan, Fu Hai-Wei, Shao Min, Li Xiao-Li. Temperature characteristic of photonic crystals resonant cavitycomposed of GaAs pillars with graphite lattice. Acta Physica Sinica, 2011, 60(7): 074219. doi: 10.7498/aps.60.074219
    [14] Cheng Cun-Feng, Yang Guo-Min, Jiang Wei, Pan Hu, Sun Yu, Liu An-Wen, Cheng Guo-Sheng, Hu Shui-Ming. Bright metastable noble gas atomic beam and atom trap using laser cooling. Acta Physica Sinica, 2011, 60(10): 103701. doi: 10.7498/aps.60.103701
    [15] Cheng Zheng-Fu, Long Xiao-Xia, Zheng Rui-Lun. Influence of temperature on the Bose condensation of photons and excitons in optic microcavity. Acta Physica Sinica, 2010, 59(12): 8377-8384. doi: 10.7498/aps.59.8377
    [16] Han Ru, Fan Xiao-Ya, Yang Yin-Tang. Temperature-dependent Raman property of n-type SiC. Acta Physica Sinica, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [17] Wang Ya-Zhen, Huang Ping, Gong Zhong-Liang. Study on the influence of temperature on interfacial micro-friction. Acta Physica Sinica, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [18] Chen Pi-Heng, Ao Bing-Yun, Li Ju, Li Rong, Shen Liang. Simulation of He behavior in bcc Fe on heating. Acta Physica Sinica, 2009, 58(4): 2605-2611. doi: 10.7498/aps.58.2605
    [19] Chen Guo-Qing, Wu Ya-Min, Lu Xing-Zhong. Temperature effects of optical bistability of metal/dielectric granular composites. Acta Physica Sinica, 2007, 56(2): 1146-1151. doi: 10.7498/aps.56.1146
    [20] Guo Jian-Jun. . Acta Physica Sinica, 2002, 51(3): 497-500. doi: 10.7498/aps.51.497
Metrics
  • Abstract views:  5719
  • PDF Downloads:  159
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2017
  • Accepted Date:  21 September 2017
  • Published Online:  05 February 2018

/

返回文章
返回