-
In this work, the interaction among multiple bubbles in a cavitation field is investigated by combining the experimental observation of small bubbles hovering around large bubbles. A model composed of three bubbles is developed, and the dynamic behavior of cavitation bubble is analyzed. By considering the time delay effect of the interaction among bubbles and the nonspherical oscillation of large bubbles, the modified bubble dynamic equations are obtained. Numerical results show that the nonspherical effect of large bubbles has little effect on the oscillation of cavitation bubble. The suppressive effect of large bubble on cavitation bubble is closely related to the radius of the large bubble. The larger the size of the large bubble, the stronger the suppression is. When the size of large bubble approaches to the resonant radius, the oscillation of cavitation bubble presents coupled resonance response, and the maximum expansion radius of bubble shows a resonance peak. The distribution of the secondary Bjerknes force versus bubble radius and the separation distance is strongly influenced by driving frequencies or sound pressure. When the large bubble is on the order of submillimeter, the intensity of the secondary Bjerknes force and the acoustic response mode are different due to the different intensity of the nonlinear response of the cavitation bubble. As the distance decreases, when the acoustic pressure increases to a certain value, the secondary Bjerknes force on the cavitation bubble decreases due to abnormal acoustic absorption. The secondary Bjerknes force on cavitation bubble is likely to be repulsive at different separation distances. The theoretical results accord well with experimental phenomenon.
-
Keywords:
- multi-bubble system /
- secondary Bjerknes force /
- interaction
[1] Neppiras E A 1980 Phys. Rep. 61 159Google Scholar
[2] 冯若, 赵逸云, 陈兆华, 黄金兰, 王双维, 莫喜平, 李华茂, 朱昌平 1994 声学技术 13 56
Feng R, Zhao Y Y, Chen Z H, Huang J L, Wang S X, Mo X P, Li H M, Zhu C P 1994 Tech. Acoust. 13 56
[3] Galleguillos R 2022 Appl. Acoust. 192 108716Google Scholar
[4] Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar
[5] Miller D L 1987 Ultrasound Med. Biol. 13 443Google Scholar
[6] Lu X Z, Chahine G L, Hsiao C T 2012 J. Acoust. Soc. Am. 131 24Google Scholar
[7] Plessett M S, Prosperetti A 1977 Ann. Rev. Fluid Mech. 9 145Google Scholar
[8] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar
[9] Lauterborn W 1976 J. Acoust. Soc. Am. 59 283Google Scholar
[10] Bjerknes V F K 1906 Fields of Force (New York: Columbia University Press) pp29–55
[11] Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501Google Scholar
[12] Zhang X M, Li F, Wang C, Mo R, Hu J, Guo J, Lin S 2022 Ultrasonics 126 106809Google Scholar
[13] Li F, Zhang X M, Tian H, Hu J, Chen S, Mo R Y, Wang C, Guo J 2022 Ultrason. Sonochem. 87 106057Google Scholar
[14] An Y 2011 Phys. Rev. E 83 066313Google Scholar
[15] Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar
[16] 张鹏利, 林书玉 2009 物理学报 58 7797Google Scholar
Zhang P L, Lin S Y 2009 Acta Phys. Sin. 58 7797Google Scholar
[17] Qin D, Zou Q Q, Lei S, Wang W, Li Z Y 2021 Ultrason. Sonochem. 78 105712Google Scholar
[18] Ma Y, Zhang G Q, Ma T 2022 Ultrason. Sonochem. 84 105953Google Scholar
[19] Chen H Y, Chen Z L, Li Y 2020 Ultrason. Sonochem. 61 104814Google Scholar
[20] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳 2022 物理学报 71 084303Google Scholar
Li F, Zhang X M, Tian H, Hu J, Chen S, Wang C H, Guo J Z, Mo R Y 2022 Acta Phys. Sin. 71 084303Google Scholar
[21] Keller J B, Kolodner I I 1956 J. Appl. Phys. 27 1152Google Scholar
[22] Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954Google Scholar
[23] Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924
[24] Doinikov A A, Zavtrak S T 1996 Ultrasonics 34 807Google Scholar
[25] Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 1Google Scholar
[26] Nguyen B Q H, Maksymov I S, Suslov S A 2021 Sci. Rep. 11 1Google Scholar
-
图 6 气泡1和3之间的次级Bjerknes力随气泡2和气泡3半径的变化 (a)声波频率为28 kHz; (b) 声波频率为40 kHz; (c) 声波频率为80 kHz
Figure 6. Variation of the secondary Bjerknes force between bubbles 1 and 3 with the radius of bubbles 2 and 3: (a) Acoustic frequencies is 28 kHz; (b) acoustic frequencies is 40 kHz; (c) acoustic frequencies is 80 kHz.
图 7 气泡1和3之间的次级Bjerknes力随驱动声压幅值以及垂直距离h的变化 (a) 声波频率为20 kHz; (b) 声波频率为40 kHz; (c) 声波频率为80 kHz.
Figure 7. Variation of the secondary Bjerknes force between bubbles 1 and 3 with the driving sound pressure amplitude and the vertical distance h: (a) Acoustic frequency is 20 kHz; (b) acoustic frequency is 40 kHz; (c) acoustic frequency is 80 kHz.
图 8 气泡1和3之间的次级Bjerknes力随驱动声波频率以及垂直距离h的变化 (a) 驱动声压幅值为1.6 atm; (b) 驱动声压幅值为1.8 atm; (c) 驱动声压幅值为2.0 atm
Figure 8. Variation of the secondary Bjerknes force between bubbles 1 and 3 with the driving acoustic frequency and the vertical distance h: (a) Driving sound pressure amplitude is 1.6 atm; (b) driving sound pressure amplitude is 1.8 atm; (c) driving sound pressure amplitude is 2.0 atm.
-
[1] Neppiras E A 1980 Phys. Rep. 61 159Google Scholar
[2] 冯若, 赵逸云, 陈兆华, 黄金兰, 王双维, 莫喜平, 李华茂, 朱昌平 1994 声学技术 13 56
Feng R, Zhao Y Y, Chen Z H, Huang J L, Wang S X, Mo X P, Li H M, Zhu C P 1994 Tech. Acoust. 13 56
[3] Galleguillos R 2022 Appl. Acoust. 192 108716Google Scholar
[4] Brenner M P, Hilgenfeldt S, Lohse D 2002 Rev. Mod. Phys. 74 425Google Scholar
[5] Miller D L 1987 Ultrasound Med. Biol. 13 443Google Scholar
[6] Lu X Z, Chahine G L, Hsiao C T 2012 J. Acoust. Soc. Am. 131 24Google Scholar
[7] Plessett M S, Prosperetti A 1977 Ann. Rev. Fluid Mech. 9 145Google Scholar
[8] Keller J B, Miksis M 1980 J. Acoust. Soc. Am. 68 628Google Scholar
[9] Lauterborn W 1976 J. Acoust. Soc. Am. 59 283Google Scholar
[10] Bjerknes V F K 1906 Fields of Force (New York: Columbia University Press) pp29–55
[11] Lauterborn W, Kurz T 2010 Rep. Prog. Phys. 73 106501Google Scholar
[12] Zhang X M, Li F, Wang C, Mo R, Hu J, Guo J, Lin S 2022 Ultrasonics 126 106809Google Scholar
[13] Li F, Zhang X M, Tian H, Hu J, Chen S, Mo R Y, Wang C, Guo J 2022 Ultrason. Sonochem. 87 106057Google Scholar
[14] An Y 2011 Phys. Rev. E 83 066313Google Scholar
[15] Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar
[16] 张鹏利, 林书玉 2009 物理学报 58 7797Google Scholar
Zhang P L, Lin S Y 2009 Acta Phys. Sin. 58 7797Google Scholar
[17] Qin D, Zou Q Q, Lei S, Wang W, Li Z Y 2021 Ultrason. Sonochem. 78 105712Google Scholar
[18] Ma Y, Zhang G Q, Ma T 2022 Ultrason. Sonochem. 84 105953Google Scholar
[19] Chen H Y, Chen Z L, Li Y 2020 Ultrason. Sonochem. 61 104814Google Scholar
[20] 李凡, 张先梅, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳 2022 物理学报 71 084303Google Scholar
Li F, Zhang X M, Tian H, Hu J, Chen S, Wang C H, Guo J Z, Mo R Y 2022 Acta Phys. Sin. 71 084303Google Scholar
[21] Keller J B, Kolodner I I 1956 J. Appl. Phys. 27 1152Google Scholar
[22] Brenner M P, Lohse D, Dupont T F 1995 Phys. Rev. Lett. 75 954Google Scholar
[23] Mettin R, Akhatov I, Parlitz U, Ohl C D, Lauterborn W 1997 Phys. Rev. E 56 2924
[24] Doinikov A A, Zavtrak S T 1996 Ultrasonics 34 807Google Scholar
[25] Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 1Google Scholar
[26] Nguyen B Q H, Maksymov I S, Suslov S A 2021 Sci. Rep. 11 1Google Scholar
Catalog
Metrics
- Abstract views: 4468
- PDF Downloads: 94
- Cited By: 0