-
${\text{π }}$ -phase-shifted fiber Bragg grating with a short effective sensing length becomes one of research hotspots in ultrasonic sensing, because light undergoes strong localization centered at its phase shift position. To investigate the directional sensing characteristics of${\text{π }}$ -phase-shifted fiber Bragg grating as hydrophone, the theory of sound propagation in layered media is used to calculate the strain of fiber core, then the transfer matrix method based on the coupled-mode theory in optics is used to calculate the shift of central wavelength in optical reflection spectrum. Results of strain and wavelength shift under obliquely incident ultrasonic from 1-10 MHz are divided into A area, B area, and C area, and analyzed by numerical calculation and simulation calculation. Axial strain and elasto-optical strain change the grating period and effective refractive index by the mechanical effect and elasto-optical effect, respectively, thereby resulting in wavelength shift. In A area (frequency below 5 MHz, incident angle below$15^\circ $ ), the axial strain nearly equals zero, thus elasto-optical effect plays a predominant role in wavelength shift. The maximal response occurs at vertical incidence, and then obviously declines with angle increasing. The maximum is essentially unchanged with grating length. In B area and C area (angle above$15^\circ $ ), both mechanical effect and elasto-optical effect contribute to wavelength shift. In B area (frequency below 5 MHz), the amplitude of strain is the largest in three areas. A peak of wavelength shift appears at the same angle of the peak of strain, where exists the interference of the guided wave in fiber with the direct ultrasonic wave form water. The peak amplitude of wavelength shift decreases with grating length increasing. In C area (frequency below 5 MHz), the amplitude of strain is larger than in A area, but the wavelength shift is smaller, which is correlated to its higher axial wave number. Comparing the results in three areas, it is clear that the wavelength shift is larger at lower frequency and at vertical incidence. Experiments on 3 MHz and 5 MHz are then performed with a π-phase-shifted fiber Bragg grating. The experimental result accords well with the theoretical result. The research is important in practically using the${\text{π }}$ -phase-shifted fiber Bragg grating in ultrasonic sensing.-
Keywords:
- π-phase-shifted fiber Bragg grating /
- ultrasonic sensing /
- directivity
[1] Majumder M, Gangopadhyay T K, Chakraborty A K, Dasgupta K, Bhattacharya D K 2008 Sens. Actuator A: Phys. 147 150Google Scholar
[2] Wu Q, Okabe Y, Yu F 2018 Sensors 18 3395Google Scholar
[3] Roriz P, Frazão O, Lobo-Ribeiro A B, Santos J L, Simões J A 2013 J. Biomed. Opt. 18 50903Google Scholar
[4] 王力, 王永杰, 于非, 李芳 2021 激光与光电子学进展 58 1306014Google Scholar
Wang L, Wang Y J, Yu F, Li F 2021 Laser. Optoelectron. Prog. 58 1306014Google Scholar
[5] Tosi D 2017 Sensors. 17 2368Google Scholar
[6] Minardo A, Cusano A, Bernini R, Zeni L, Giordano M 2005 IEEE T. Ultrason., Ferr. 52 304Google Scholar
[7] Rosenthal A, Razansky D, Ntziachristos V 2011 Opt. Lett. 36 1833Google Scholar
[8] Takeda N, Okabe Y, Kuwahara J, Kojima S, Ogisu T 2005 Compos. Sci. Technol. 65 2575Google Scholar
[9] Gatti D, Galzerano G, Janner D, Longhi S, Laporta P 2008 Opt. Express 16 1945Google Scholar
[10] Rosenthal A, Caballero M Á A, Kellnberger S, Razansky D, Ntziachristos V 2012 Opt. Lett. 37 3174Google Scholar
[11] Guo J, Xue S, Zhao Q, Yang C 2014 Opt. Express 22 19573Google Scholar
[12] Wu Q, Okabe Y, Saito K, Yu F 2014 Sensors 14 1094Google Scholar
[13] Wu Q, Okabe Y 2014 J. Intell. Mater. Syst. Struct. 25 640Google Scholar
[14] Guo J, Yang C 2015 IEEE Photon. Technol. Lett. 27 848Google Scholar
[15] Meng L J, Yi J G, Tan X, Li C 2017 IEICE Electron. Express. 14 20170259Google Scholar
[16] Foster S B, Cranch G A, Harrison J, Tikhomirov A E, Miller G A 2017 J. Light. Technol. 35 3514Google Scholar
[17] Jiang Y, Liu C, Li D, Yang D, Zhao J 2018 Meas. Sci. Technol. 29 045101Google Scholar
[18] Srivastava D, Tiwari U, Das B 2018 Opt. Commun. 410 88Google Scholar
[19] Wu Q, Wang R, Lan W, Zhang H, Zhai H 2021 Advanced Sensor Systems and Applications XI Nantong, China , October 10–12, 2021 p26
[20] Fomitchov P, Krishnaswamy S 2003 Opt. Eng. 42 956Google Scholar
[21] Liu T, Han M 2012 IEEE Sensors. J. 12 2368Google Scholar
[22] Wu D, Marchi G, Rus J, Hopf B, Drexler P, Roths J 2018 German Acoustic Conference 2018 Muenchen, German, March 29, 2018 p978
[23] Veres I A, Burgholzer P, Berer T, Rosenthal A, Wissmeyer G, Ntziachristos V 2014 J. Acoust. Soc. Am. 135 1853Google Scholar
[24] Nagy P B 1995 J. Acoust. Soc. Am. 98 454Google Scholar
[25] Ahmad F 2001 J. Acoust. Soc. Am. 109 886Google Scholar
[26] Honarvar F, Sinclair A N 1996 J. Acoust. Soc. Am. 100 57Google Scholar
[27] Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822Google Scholar
[28] Huang W, Wang Y J, Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742Google Scholar
[29] Erdogan T 1997 J. Light. Technol. 15 1277Google Scholar
[30] Yamada M, Sakuda K 1987 Appl. Opt. 26 3474Google Scholar
[31] Thurston R N 1978 J. Acoust. Soc. Am. 64 1Google Scholar
[32] Jarzynski J 2001 Opt. Eng. 40 2115Google Scholar
[33] 江毅, 陈淑芬 2004 光学学报 24 11Google Scholar
Jiang Y, Chen S F 2004 Acta Opt. Sin. 24 11Google Scholar
-
-
[1] Majumder M, Gangopadhyay T K, Chakraborty A K, Dasgupta K, Bhattacharya D K 2008 Sens. Actuator A: Phys. 147 150Google Scholar
[2] Wu Q, Okabe Y, Yu F 2018 Sensors 18 3395Google Scholar
[3] Roriz P, Frazão O, Lobo-Ribeiro A B, Santos J L, Simões J A 2013 J. Biomed. Opt. 18 50903Google Scholar
[4] 王力, 王永杰, 于非, 李芳 2021 激光与光电子学进展 58 1306014Google Scholar
Wang L, Wang Y J, Yu F, Li F 2021 Laser. Optoelectron. Prog. 58 1306014Google Scholar
[5] Tosi D 2017 Sensors. 17 2368Google Scholar
[6] Minardo A, Cusano A, Bernini R, Zeni L, Giordano M 2005 IEEE T. Ultrason., Ferr. 52 304Google Scholar
[7] Rosenthal A, Razansky D, Ntziachristos V 2011 Opt. Lett. 36 1833Google Scholar
[8] Takeda N, Okabe Y, Kuwahara J, Kojima S, Ogisu T 2005 Compos. Sci. Technol. 65 2575Google Scholar
[9] Gatti D, Galzerano G, Janner D, Longhi S, Laporta P 2008 Opt. Express 16 1945Google Scholar
[10] Rosenthal A, Caballero M Á A, Kellnberger S, Razansky D, Ntziachristos V 2012 Opt. Lett. 37 3174Google Scholar
[11] Guo J, Xue S, Zhao Q, Yang C 2014 Opt. Express 22 19573Google Scholar
[12] Wu Q, Okabe Y, Saito K, Yu F 2014 Sensors 14 1094Google Scholar
[13] Wu Q, Okabe Y 2014 J. Intell. Mater. Syst. Struct. 25 640Google Scholar
[14] Guo J, Yang C 2015 IEEE Photon. Technol. Lett. 27 848Google Scholar
[15] Meng L J, Yi J G, Tan X, Li C 2017 IEICE Electron. Express. 14 20170259Google Scholar
[16] Foster S B, Cranch G A, Harrison J, Tikhomirov A E, Miller G A 2017 J. Light. Technol. 35 3514Google Scholar
[17] Jiang Y, Liu C, Li D, Yang D, Zhao J 2018 Meas. Sci. Technol. 29 045101Google Scholar
[18] Srivastava D, Tiwari U, Das B 2018 Opt. Commun. 410 88Google Scholar
[19] Wu Q, Wang R, Lan W, Zhang H, Zhai H 2021 Advanced Sensor Systems and Applications XI Nantong, China , October 10–12, 2021 p26
[20] Fomitchov P, Krishnaswamy S 2003 Opt. Eng. 42 956Google Scholar
[21] Liu T, Han M 2012 IEEE Sensors. J. 12 2368Google Scholar
[22] Wu D, Marchi G, Rus J, Hopf B, Drexler P, Roths J 2018 German Acoustic Conference 2018 Muenchen, German, March 29, 2018 p978
[23] Veres I A, Burgholzer P, Berer T, Rosenthal A, Wissmeyer G, Ntziachristos V 2014 J. Acoust. Soc. Am. 135 1853Google Scholar
[24] Nagy P B 1995 J. Acoust. Soc. Am. 98 454Google Scholar
[25] Ahmad F 2001 J. Acoust. Soc. Am. 109 886Google Scholar
[26] Honarvar F, Sinclair A N 1996 J. Acoust. Soc. Am. 100 57Google Scholar
[27] Rokhlin S I, Wang L 2002 J. Acoust. Soc. Am. 112 822Google Scholar
[28] Huang W, Wang Y J, Rokhlin S I 1996 J. Acoust. Soc. Am. 99 2742Google Scholar
[29] Erdogan T 1997 J. Light. Technol. 15 1277Google Scholar
[30] Yamada M, Sakuda K 1987 Appl. Opt. 26 3474Google Scholar
[31] Thurston R N 1978 J. Acoust. Soc. Am. 64 1Google Scholar
[32] Jarzynski J 2001 Opt. Eng. 40 2115Google Scholar
[33] 江毅, 陈淑芬 2004 光学学报 24 11Google Scholar
Jiang Y, Chen S F 2004 Acta Opt. Sin. 24 11Google Scholar
Catalog
Metrics
- Abstract views: 4358
- PDF Downloads: 96
- Cited By: 0