-
An annular groove (AG) structure with depth gradient is proposed which can manipulate the spatial distribution of the acoustic scattering field for a finite rigid cylinder in water. An analytical analysis is given for better understanding the underlying mechanism of the abnormal scattered wave, which can be accomplished by using the phased array theory. When the plane acoustic wave is normally incident, the scattering acoustic wave in the transverse direction of the cylinder deflects, which is due to the interaction between the phase delay modulated by the AG structure with varying groove depths and the Bragg scattering of adjacent grooves. The finite element method is used to calculate the acoustic scattering field of a finite rigid cylinder with annular grooves and obtain the frequency and spatial distribution characteristics. How the structural parameters such as depth, gradient, and duty ratio of the annular grooves affect the acoustic scattering field is discussed in detail. The results show that the target strength in the transverse direction decreases linearly with duty ratio increasing while the target strength in the deflection direction of the acoustic wave increases with the duty ratio until δ = 30%, after which it remains almost constant. When the incident acoustic wave is fixed, the acoustic scattering wave of the AG cylinder can be deflected by designing the gradient appropriately, and the deflection direction is independent of the frequency. Numerical and experimental results for a cylinder with multiple annular-groove units show that the spatial directivity of the scattering field of the grooved cylinder changes, and the target strength is enhanced at six pre-designed deflection angles. Meanwhile, the deflected acoustic wave has a certain width and the interference among periodic structures of the AG units exists, which makes the spatial directivity of the scattering field of the cylinder equalize and changes the scattering characteristics of the cylinder, thereby providing a theoretical basis for designing three-dimensional underwater objects each with an acoustic stealth.
-
Keywords:
- annular grooves /
- acoustic deflection /
- cylinder /
- acoustic scattering
[1] Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar
[2] Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Sci. Rep. 3 2537Google Scholar
[3] Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Appl. Phys. Lett. 103 151604Google Scholar
[4] Li Y, Xue J, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C 2014 Phys. Rev. Appl. 2 064002Google Scholar
[5] Mei J, Wu Y 2014 New J. Phys. 16 123007Google Scholar
[6] Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501Google Scholar
[7] Zhu Y F, Fan X D, Liang B, Yang J, Yang J, Yin L L, Cheng J C 2016 AIP Adv. 6 121702Google Scholar
[8] Ye Y T, Ke M Z, Li Y X, Wang T, Liu Z Y 2013 J. Appl. Phys. 114 154504Google Scholar
[9] Chen J, Sun Z Q, Fan Z 2019 Appl. Phys. Lett. 114 254102Google Scholar
[10] Li J F, Wang W Q, Xie Y B, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar
[11] Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar
[12] Long H Y, Gao S X, Cheng Y, Liu X J 2018 Appl. Phys. Lett. 112 033507Google Scholar
[13] Li Y and M. Assouar B 2016 Appl. Phys. Lett. 108 063502Google Scholar
[14] Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar
[15] Tian Y, Wei Q, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 110 191901Google Scholar
[16] Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar
[17] Zhu Y F, Assouar B 2019 Phys. Rev. Mater. 3 045201Google Scholar
[18] Christensen J, Fernandez D A I, De L P F, Martin M L, Garcia V F J 2007 Nat. Phys. 3 851Google Scholar
[19] Zhu J, Chen Y Y, Zhu X F, Garcia V F J, Yin X B, Zhang W L, Zhang X 2013 Sci. Rep. 3 1728Google Scholar
[20] Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys. 116 124504Google Scholar
[21] Jia H, Lu M H, Wang Q C, Bao M, Li X D 2013 Appl. Phys. Lett. 103 103505Google Scholar
[22] Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966Google Scholar
[23] Srivastava P, Nichols B, Sabra K G 2017 J. Acoust. Soc. Am. 142 EL573Google Scholar
[24] Wu X X, Xia X X, Tian J X, Liu Z Y, Wen W J 2016 Appl. Phys. Lett. 108 163502Google Scholar
[25] Liu J F, Declercq N F 2016 Appl. Phys. Lett. 109 261603Google Scholar
[26] Lee H K, Jung M, Kim M, Shin R, Kang S, Ohm W, Kim Y T 2018 J. Acoust. Soc. Am. 143 1534Google Scholar
[27] 程建春 2019 声学原理 (北京: 科学出版社) 第89−90页
Cheng J C 2019 Acoustical Principle (Beijing: Science Press) pp89−90 (in Chinese)
[28] 朱一凡, 梁彬, 程建春 2018 应用声学 37 53Google Scholar
Zhu Y F, Liang B, Cheng J C 2018 J. Appl. Acoust. 37 53Google Scholar
[29] 汤渭霖, 陈德智 1988 声学学报 1 29
Tang W L, Chen D Z 1988 Acta. Acustica. 1 29
[30] 汤渭霖, 范军, 马忠诚 2018 水中目标声散射 (北京: 科学出版社) 第55−66页
Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp55−66 (in Chinese)
-
图 3 凹槽圆柱归一化指向性函数频率-角度谱
Figure 3. Frequency-angle spectra of the normalized directional factors for the annular groove cylinder by Eq. (5)
-
[1] Li Y, Liang B, Gu Z M, Zou X Y, Cheng J C 2013 Sci. Rep. 3 2546Google Scholar
[2] Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Sci. Rep. 3 2537Google Scholar
[3] Zhao J J, Li B W, Chen Z N, Qiu C W 2013 Appl. Phys. Lett. 103 151604Google Scholar
[4] Li Y, Xue J, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C 2014 Phys. Rev. Appl. 2 064002Google Scholar
[5] Mei J, Wu Y 2014 New J. Phys. 16 123007Google Scholar
[6] Fan X D, Zhu Y F, Liang B, Yang J, Cheng J C 2016 Appl. Phys. Lett. 109 243501Google Scholar
[7] Zhu Y F, Fan X D, Liang B, Yang J, Yang J, Yin L L, Cheng J C 2016 AIP Adv. 6 121702Google Scholar
[8] Ye Y T, Ke M Z, Li Y X, Wang T, Liu Z Y 2013 J. Appl. Phys. 114 154504Google Scholar
[9] Chen J, Sun Z Q, Fan Z 2019 Appl. Phys. Lett. 114 254102Google Scholar
[10] Li J F, Wang W Q, Xie Y B, Popa B I, Cummer S A 2016 Appl. Phys. Lett. 109 091908Google Scholar
[11] Long H Y, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 111 143502Google Scholar
[12] Long H Y, Gao S X, Cheng Y, Liu X J 2018 Appl. Phys. Lett. 112 033507Google Scholar
[13] Li Y and M. Assouar B 2016 Appl. Phys. Lett. 108 063502Google Scholar
[14] Melde K, Mark A G, Qiu T, Fischer P 2016 Nature 537 518Google Scholar
[15] Tian Y, Wei Q, Cheng Y, Liu X J 2017 Appl. Phys. Lett. 110 191901Google Scholar
[16] Xie Y B, Shen C, Wang W Q, Li J F, Suo D J, Popa B Jing Y, Cummer S A 2016 Sci. Rep. 6 35437Google Scholar
[17] Zhu Y F, Assouar B 2019 Phys. Rev. Mater. 3 045201Google Scholar
[18] Christensen J, Fernandez D A I, De L P F, Martin M L, Garcia V F J 2007 Nat. Phys. 3 851Google Scholar
[19] Zhu J, Chen Y Y, Zhu X F, Garcia V F J, Yin X B, Zhang W L, Zhang X 2013 Sci. Rep. 3 1728Google Scholar
[20] Jia H, Lu M H, Ni X, Bao M, Li X D 2014 J. Appl. Phys. 116 124504Google Scholar
[21] Jia H, Lu M H, Wang Q C, Bao M, Li X D 2013 Appl. Phys. Lett. 103 103505Google Scholar
[22] Zhu Y F, Zou X Y, Li R Q, Jiang X, Tu J, Liang B, Cheng J C 2015 Sci. Rep. 5 10966Google Scholar
[23] Srivastava P, Nichols B, Sabra K G 2017 J. Acoust. Soc. Am. 142 EL573Google Scholar
[24] Wu X X, Xia X X, Tian J X, Liu Z Y, Wen W J 2016 Appl. Phys. Lett. 108 163502Google Scholar
[25] Liu J F, Declercq N F 2016 Appl. Phys. Lett. 109 261603Google Scholar
[26] Lee H K, Jung M, Kim M, Shin R, Kang S, Ohm W, Kim Y T 2018 J. Acoust. Soc. Am. 143 1534Google Scholar
[27] 程建春 2019 声学原理 (北京: 科学出版社) 第89−90页
Cheng J C 2019 Acoustical Principle (Beijing: Science Press) pp89−90 (in Chinese)
[28] 朱一凡, 梁彬, 程建春 2018 应用声学 37 53Google Scholar
Zhu Y F, Liang B, Cheng J C 2018 J. Appl. Acoust. 37 53Google Scholar
[29] 汤渭霖, 陈德智 1988 声学学报 1 29
Tang W L, Chen D Z 1988 Acta. Acustica. 1 29
[30] 汤渭霖, 范军, 马忠诚 2018 水中目标声散射 (北京: 科学出版社) 第55−66页
Tang W L, Fan J, Ma Z C 2018 Acoustic Scattering of Underwater Targets (Beijing: Science Press) pp55−66 (in Chinese)
Catalog
Metrics
- Abstract views: 4178
- PDF Downloads: 60
- Cited By: 0