Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical study on spatial scale characteristics of sound scattering by a static isentropic vortex

Wang Yi-Min Ma Rui-Xuan Wu Cong-Hai Luo Yong Zhang Shu-Hai

Citation:

Numerical study on spatial scale characteristics of sound scattering by a static isentropic vortex

Wang Yi-Min, Ma Rui-Xuan, Wu Cong-Hai, Luo Yong, Zhang Shu-Hai
PDF
HTML
Get Citation
  • The scattering of acoustic waves by a vortex is a fundamental problem of the acoustic waves propagation in complex flow field, which plays an important role in academic research and engineering application for sound source localization, acoustic target recognition and detection, the far field noise prediction, such as aircraft wake vortex identification, detection and ranging, acoustic target forecasting in turbulent shear flow, acoustic measurement and sound source localization in wind tunnel test, etc. The nonlinear scattering phenomenon occurs when acoustic wave passes through the vortex, which is mainly related to the length-scale ratio between the wavelength of acoustic wave and the core radius of the vortex. In this paper, a plane acoustic wave passing through a stationary isentropic vortex is numerically simulated by solving a two-dimensional compressible, unsteady Euler equation. A sixth-order linear compact finite difference scheme is employed for spatial discretization. Time integration is performed by a four-stage fourth-order Runge-Kutta method. The eighth-order spatial compact filter scheme is adopted to suppress high frequency errors. At the far field boundaries, buffer layer is applied to handle the outgoing acoustic wave. Under the matching condition, the accuracy of the numerical results is verified by comparing with the previous direct numerical simulation results. The acoustic scattering cross-section method is introduced to analyze the effects of different length-scale ratio on the acoustic pulsation pressure, acoustic scattering effective sound pressure and acoustic scattering energy. Scattering occurs when sound waves pass through the vortex, the acoustic field in front of the vortex is basically unaffected, and the acoustic wave front remains intact. A “vacuum” region is formed slightly below the acoustic field directly behind the vortex, and two primary interference bands and several secondary interference bands are formed on the upper and lower sides of the vortex. As the length-scale ratio increases, the sound scattering decreases and the influence of the vortex flow field on the acoustic field gradually weakens. The influence region of effective sound pressure of acoustic scattering is mainly concentrated behind the vortex. With the increase of the length scale ratio, the influence gradually increases and extends to the upstream, and then the influence region gradually decreases to the vicinity of the vortex. When the length scale ratio is greater than or equal to 6, the location of the maximum effective sound pressure of sound scattering jumps from the upper right to the lower right of the vortex. The influence of acoustic wave wavelength change on the acoustic scattering energy can be divided into three parts. With the increase of the length scale ratio, the maximum sound scattering energy presents four different stages.
      Corresponding author: Zhang Shu-Hai, shuhai_zhang@163.com
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11732016), the Science and Technology Program of Sichuan Province, China (Grant No. 2018JZ0076), and the National Numerical Windtunnel project
    [1]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [2]

    Ribner H S 1957 J. Acoust. Soc. Am. 29 435Google Scholar

    [3]

    Miles J W 1957 J. Acoust. Soc. Am. 29 226Google Scholar

    [4]

    Amiet R K 1975 AIAA Paper 75Google Scholar

    [5]

    Amiet R K 1978 J. Sound Vib. 58 467Google Scholar

    [6]

    Schlinker R H, Amiet R K 1980 NASA-CR-3371

    [7]

    张雪, 陈宝, 卢清华 2014 应用声学 33 433Google Scholar

    Zhang X, Chen B, Lu Q H 2014 J. Appl. Acoust. 33 433Google Scholar

    [8]

    Bogey C, Bailly C, Juvé D 2002 AIAA J. 40 235Google Scholar

    [9]

    张军, 王勋年, 张俊龙, 卢翔宇, 陈正武 2018 实验流体力学 32 39Google Scholar

    Zhang J, Wang X N, Zhang J L, Lu X Y, Chen Z W 2018 J. Exp. Fluid Mech. 32 39Google Scholar

    [10]

    张军, 陈鹏, 张俊龙, 卢翔宇 2018 航空动力学报 33 2458Google Scholar

    Zhang J, Chen P, Zhang J L, Lu X Y 2018 J. Aerosp. Power 33 2458Google Scholar

    [11]

    倪章松, 张军, 王茂, 张俊龙 2020 航空动力学报 35 244Google Scholar

    Ni Z S, Zhang J, Wang M, Zhang J L 2020 J. Aerosp. Power 35 244Google Scholar

    [12]

    王李璨, 陈荣钱, 尤延铖, 陈正武, 邱若凡 2019 西北工业大学学报 37 1148Google Scholar

    Wang L C, Chen R Q, You Y C, Chen Z W, Qiu R F 2019 J. Northwest. Polytech. Univ. 37 1148Google Scholar

    [13]

    Wang L C, Chen R Q, You Y C, Wu W J, Qiu R F 2019 Acta Acust. Acust. 105 732Google Scholar

    [14]

    Wang L C, Chen R Q, You Y C, Qiu R F 2020 J. Sound Vib. 492 115801Google Scholar

    [15]

    Candel S M 1979 J. Fluid Mech. 90 465Google Scholar

    [16]

    Colonius T, Lele S K, Moin P 1994 J. Fluid Mech. 260 271Google Scholar

    [17]

    Symons N P, Aldridge D F, Marlin D H, Wilson D K, Patton D G, Sullivan P P, Collier S L, Ostashev V E, Drob D P 2004 11th International Symposium on Long Range Sound Propagation

    [18]

    Belyaev I V, Kopiev V F 2007 AIAA Paper 2007Google Scholar

    [19]

    Belyaev I V, Kopiev V F 2007 proceedings of the 7 th European Conference on Noise Control

    [20]

    Karabasov S A, Kopiev V F, Goloviznin V M 2009 Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)

    [21]

    Kopiev V F, Belyaev I V 2010 J. Sound Vib. 329 1409Google Scholar

    [22]

    Cheinet S, Ehrhardt L, Juve D, Blanc-Benon P 2012 J. Acoust. Soc. Am. 132 2198Google Scholar

    [23]

    Ke G Y, Li W, Zheng Z C 2015 AIAA Paper 2015Google Scholar

    [24]

    Clair V, Gabard G 2018 J. Fluid Mech. 841 50Google Scholar

    [25]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [26]

    Liu X L, Zhang S H, Zhang H X, Shu C W 2013 J. Comput. Phys. 248 235Google Scholar

    [27]

    刘旭亮 2011 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Liu X L 2011 M. S. Thesis (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [28]

    Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202Google Scholar

    [29]

    王益民 2017 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Wang Y M 2017 Master Dissertation (Mianyang: China Aerodynamics Research and Development Cen-ter) (in Chinese)

    [30]

    Inoue O, Hattori Y 1999 J. Fluid Mech. 380 81Google Scholar

    [31]

    Zhang S H, Zhang Y T, Chi C W 2005 Phys. Fluids 17 116101Google Scholar

    [32]

    Robert H K 1953 J. Acoust. Soc. Am. 25 1096Google Scholar

    [33]

    Hattori Y, Llewellyn S S G 2002 J. Fluid Mech. 473 275Google Scholar

    [34]

    Shi J, Yang D S, Zhang H Y, Shi S G, Li S, Hu B 2017 Chin. Phys. B 26 074301Google Scholar

    [35]

    Wu J Z 1991 Adv. Mech. 21 430Google Scholar

    [36]

    Wu J Z 1992 Adv. Mech. 22 35Google Scholar

  • 图 1  平面声波穿过旋涡的示意图

    Figure 1.  Schematic diagram of acoustic wave propagating through a vortex

    图 2  静止等熵涡初始分布 (a) 密度; (b) 速度; (c) 压强; (d) 涡量

    Figure 2.  Initial distribution of stationary isentropic vortices: (a) density; (b) velocity; (c)pressure; (d) vorticity.

    图 3  散射有效声压在半径为$r = 8{R_{\rm c}}$ 圆周上的分布及其与文献[16, 24]的对比

    Figure 3.  The distribution of root-mean-square pressure of scattered wave on a circle with radius $8 R_{\rm c}$ (comparison between numerical results and that of reference[16, 24])

    图 4  声波脉动压强随长度尺度比$r_{\rm L}$的变化云图 (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c) $ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $ r_{\rm L} = 10.0 $; (f) $ r_{\rm L} = 20.0 $

    Figure 4.  The contour of the change of acoustic wave pressure with the length-scale ratio $ r_{\rm L} $: (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c)$ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $ r_{\rm L} = 10.0 $; (f) $ r_{\rm L} = 20.0 $.

    图 5  散射有效声压$ p_{\rm rms} $随长度尺度比$ r_{\rm L} $的变化云图 (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c) $ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $r_{\rm L} = $$ 10.0$; (f) $ r_{\rm L} = 20.0 $

    Figure 5.  The contour of the change of the root-mean-square of scattering pressure with the length-scale ratio $ r_{\rm L} $: (a) $ r_{\rm L} = 0.1 $; (b) $ r_{\rm L} = 0.5 $; (c) $ r_{\rm L} = 1.0 $; (d) $ r_{\rm L} = 5.0 $; (e) $ r_{\rm L} = 10.0 $; (f) $ r_{\rm L} = 20.0 $.

    图 6  散射有效声压在半径为$ r = 8 R_{\rm c} $圆周上的分布  (a) 全局图; (b) 局部放大图1; (c) 局部放大图2

    Figure 6.  The distribution of root-mean-square pressure of scattered wave on a circle with radius $ 8 R_{\rm c} $: (a) Global; (b) zoomed 1; (c) zoomed 2.

    图 7  散射有效声压最大值随长度尺度比的变化曲线  (a) 散射有效声压最大值; (b) 散射有效声压最大值点的半径; (c) 散射有效声压最大值点的角度

    Figure 7.  The curve of the root-mean-square pressure of scattered wave with $r_{\rm L}$ value: (a) $ {p_{{\rm rms}\;{\rm max}}} $; (b) $ R\left({p_{{\rm rms}\;{\rm max}}} \right) $; (c) $ \theta \left( {p_{{\rm rms}\;{\rm max}}} \right) $.

    图 8  声散射能量$ \varSigma $随观测半径$ R $的变化曲线 (a) $r_{\rm L} \in $$ \left ( 0.1, \, 1.0 \right)$; (b) $ r_{\rm L} \in \left ( 2.0, \, 5.0 \right) $; (c) $ r_{\rm L} \in \left ( 6.0, \, 30.0 \right) $

    Figure 8.  The curve of acoustical scattering cross-section with observed radius: (a) $ r_{\rm L} \in \left ( 0.1, \, 1.0 \right) $; (b) $ r_{\rm L} \in \left ( 2.0, \, 5.0 \right) $; (c) $ r_{\rm L} \in \left ( 6.0, \, 30.0 \right) $.

    图 9  声散射能量随尺度比的变化曲线 (a) $\varSigma_{\max }$; (b) $R\left(\varSigma_{\max }\right )$

    Figure 9.  The curve of acoustical scattering cross-section with $ r_{\rm L} $ value: (a) $\varSigma_{\max }$; (b) $R\left( \varSigma_{\max }\right )$.

    图 10  声波幅值随时间的变化曲线

    Figure 10.  The variation of acoustic wave amplitude with time

    图 11  声散射压强云图 (a) $ \lambda = 1 $; (b) $ \lambda = 2 $; (c) $ \lambda = 4 $

    Figure 11.  The contour of sound scattering pressure: (a) $ \lambda = 1 $; (b) $ \lambda = 2 $; (c) $ \lambda = 4 $.

  • [1]

    Colonius T, Lele S K 2004 Prog. Aerosp. Sci. 40 345Google Scholar

    [2]

    Ribner H S 1957 J. Acoust. Soc. Am. 29 435Google Scholar

    [3]

    Miles J W 1957 J. Acoust. Soc. Am. 29 226Google Scholar

    [4]

    Amiet R K 1975 AIAA Paper 75Google Scholar

    [5]

    Amiet R K 1978 J. Sound Vib. 58 467Google Scholar

    [6]

    Schlinker R H, Amiet R K 1980 NASA-CR-3371

    [7]

    张雪, 陈宝, 卢清华 2014 应用声学 33 433Google Scholar

    Zhang X, Chen B, Lu Q H 2014 J. Appl. Acoust. 33 433Google Scholar

    [8]

    Bogey C, Bailly C, Juvé D 2002 AIAA J. 40 235Google Scholar

    [9]

    张军, 王勋年, 张俊龙, 卢翔宇, 陈正武 2018 实验流体力学 32 39Google Scholar

    Zhang J, Wang X N, Zhang J L, Lu X Y, Chen Z W 2018 J. Exp. Fluid Mech. 32 39Google Scholar

    [10]

    张军, 陈鹏, 张俊龙, 卢翔宇 2018 航空动力学报 33 2458Google Scholar

    Zhang J, Chen P, Zhang J L, Lu X Y 2018 J. Aerosp. Power 33 2458Google Scholar

    [11]

    倪章松, 张军, 王茂, 张俊龙 2020 航空动力学报 35 244Google Scholar

    Ni Z S, Zhang J, Wang M, Zhang J L 2020 J. Aerosp. Power 35 244Google Scholar

    [12]

    王李璨, 陈荣钱, 尤延铖, 陈正武, 邱若凡 2019 西北工业大学学报 37 1148Google Scholar

    Wang L C, Chen R Q, You Y C, Chen Z W, Qiu R F 2019 J. Northwest. Polytech. Univ. 37 1148Google Scholar

    [13]

    Wang L C, Chen R Q, You Y C, Wu W J, Qiu R F 2019 Acta Acust. Acust. 105 732Google Scholar

    [14]

    Wang L C, Chen R Q, You Y C, Qiu R F 2020 J. Sound Vib. 492 115801Google Scholar

    [15]

    Candel S M 1979 J. Fluid Mech. 90 465Google Scholar

    [16]

    Colonius T, Lele S K, Moin P 1994 J. Fluid Mech. 260 271Google Scholar

    [17]

    Symons N P, Aldridge D F, Marlin D H, Wilson D K, Patton D G, Sullivan P P, Collier S L, Ostashev V E, Drob D P 2004 11th International Symposium on Long Range Sound Propagation

    [18]

    Belyaev I V, Kopiev V F 2007 AIAA Paper 2007Google Scholar

    [19]

    Belyaev I V, Kopiev V F 2007 proceedings of the 7 th European Conference on Noise Control

    [20]

    Karabasov S A, Kopiev V F, Goloviznin V M 2009 Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference)

    [21]

    Kopiev V F, Belyaev I V 2010 J. Sound Vib. 329 1409Google Scholar

    [22]

    Cheinet S, Ehrhardt L, Juve D, Blanc-Benon P 2012 J. Acoust. Soc. Am. 132 2198Google Scholar

    [23]

    Ke G Y, Li W, Zheng Z C 2015 AIAA Paper 2015Google Scholar

    [24]

    Clair V, Gabard G 2018 J. Fluid Mech. 841 50Google Scholar

    [25]

    Lele S K 1992 J. Comput. Phys. 103 16Google Scholar

    [26]

    Liu X L, Zhang S H, Zhang H X, Shu C W 2013 J. Comput. Phys. 248 235Google Scholar

    [27]

    刘旭亮 2011 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Liu X L 2011 M. S. Thesis (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [28]

    Jiang G S, Shu C W 1996 J. Comput. Phys. 126 202Google Scholar

    [29]

    王益民 2017 硕士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Wang Y M 2017 Master Dissertation (Mianyang: China Aerodynamics Research and Development Cen-ter) (in Chinese)

    [30]

    Inoue O, Hattori Y 1999 J. Fluid Mech. 380 81Google Scholar

    [31]

    Zhang S H, Zhang Y T, Chi C W 2005 Phys. Fluids 17 116101Google Scholar

    [32]

    Robert H K 1953 J. Acoust. Soc. Am. 25 1096Google Scholar

    [33]

    Hattori Y, Llewellyn S S G 2002 J. Fluid Mech. 473 275Google Scholar

    [34]

    Shi J, Yang D S, Zhang H Y, Shi S G, Li S, Hu B 2017 Chin. Phys. B 26 074301Google Scholar

    [35]

    Wu J Z 1991 Adv. Mech. 21 430Google Scholar

    [36]

    Wu J Z 1992 Adv. Mech. 22 35Google Scholar

  • [1] Zhou Yan-Ling, Fan Jun, Wang Bin, Li Bing. Manipulating spatial directivity of acoustic scattering from a submerged cylinder by means of annular grooves. Acta Physica Sinica, 2021, 70(17): 174301. doi: 10.7498/aps.70.20210111
    [2] Ma Rui-Xuan, Wang Yi-Min, Zhang Shu-Hai, Wu Cong-Hai, Wang Xun-Nian. Numerical investigation of scale effect on acoustic scattering by vortex. Acta Physica Sinica, 2021, 70(10): 104301. doi: 10.7498/aps.70.20202206
    [3] Feng Kang-Yi, Wang Cheng-Hui. Effect of micro-bubble in ultrasonic field on microstreaming of elastic particle. Acta Physica Sinica, 2019, 68(24): 244301. doi: 10.7498/aps.68.20191253
    [4] Zhou Yan-Ling, Fan Jun, Wang Bin. Inversion for acoustic parameters of plastic polymer target in water. Acta Physica Sinica, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [5] Fan Yu-Zhe, Li Hai-Sen, Xu Chao, Chen Bao-Wei, Du Wei-Dong. Spatial correlation of underwater bubble clouds based on acoustic scattering. Acta Physica Sinica, 2017, 66(1): 014305. doi: 10.7498/aps.66.014305
    [6] Jin Guo-Liang, Yin Jian-Fei, Wen Ji-Hong, Wen Xi-Sen. Investigation of underwater sound scattering on a cylindrical shell coated with anechoic coatings by the finite element method based on an equivalent parameter inversion. Acta Physica Sinica, 2016, 65(1): 014305. doi: 10.7498/aps.65.014305
    [7] Xia Zhi, Li Xiu-Kun. Separation of elasto acoustic scattering of underwater target. Acta Physica Sinica, 2015, 64(9): 094302. doi: 10.7498/aps.64.094302
    [8] Liang Da-Chuan, Wei Ming-Gui, Gu Jian-Qiang, Yin Zhi-Ping, Ouyang Chun-Mei, Tian Zhen, He Ming-Xia, Han Jia-Guang, Zhang Wei-Li. Broad-band time domain terahertz radar cross-section research in scale models. Acta Physica Sinica, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [9] He Jing, Miao Qiang, Wu De-Wei. Microwave and light wave radar cross section similitude with unequal electrical length. Acta Physica Sinica, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] Pan An, Fan Jun, Wang Bin, Chen Zhi-Gang, Zheng Guo-Yin. Acoustic scattering from the finite periodically ribbed two concentric cylindrical shells. Acta Physica Sinica, 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [11] Wu Hai-Jun, Jiang Wei-Kang, Lu Wen-Bo. Multilevel fast multipole boundary element method for 3D acoustic problems and its applications. Acta Physica Sinica, 2012, 61(5): 054301. doi: 10.7498/aps.61.054301
    [12] Li Zhan-Long, Ouyang Shun-Li, Cao Biao, Zhou Mi, Li Zuo-Wei, Gao Shu-Qin. Effect of solvent refractive index on Raman cross-section of β-carotene. Acta Physica Sinica, 2009, 58(10): 6908-6912. doi: 10.7498/aps.58.6908
    [13] Wang Rong-Kai, Shen Guang-Xian, Yu Chun-Ri, Yang Xiang-Dong. Theoretical calculation of the scattering cross section for He-HF(DF,TF) collision system. Acta Physica Sinica, 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [14] Yu Chun-Ri, Wang Rong-Kai, Cheng Xin-Lu, Yang Xiang-Dong. Theoretical study of the effect of potential models on scattering cross sections for He-HF system. Acta Physica Sinica, 2007, 56(5): 2577-2584. doi: 10.7498/aps.56.2577
    [15] Li Min-Quan, Tao Xiao-Jun, Zhao Jin, Wu Xian-Liang. Radar cross section computation using symplectic Runge-Kutta-Nystrom method. Acta Physica Sinica, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [16] Long Yun-Xiang, Miao Guo-Ping. . Acta Physica Sinica, 2002, 51(9): 2038-2051. doi: 10.7498/aps.51.2038
    [17] You Yun-Xiang, Miu Guo-Peng. . Acta Physica Sinica, 2002, 51(2): 270-278. doi: 10.7498/aps.51.270
    [18] YOU YUN-XIANG, MIAO GUO-PING, LIU YING-ZHONG. A FAST ALGORITHM FOR VISUALIZING MULTIPLE THREE-DIMENSIONAL OBJECTS USING NEAR-FIELD ACOUSTIC MEASUREMENTS. Acta Physica Sinica, 2001, 50(6): 1103-1109. doi: 10.7498/aps.50.1103
    [19] SHEN HAO, CHENG HUAN-SHENG, TANG JIA-YONG, YANG FU-JIA. THE STUDY OF NON-RUTHERFORD BACKSCATTERING OF 4He FROM CARSON. Acta Physica Sinica, 1994, 43(10): 1569-1575. doi: 10.7498/aps.43.1569
    [20] QIAN ZU-WEN. ON THE SCATTERING OF SOUND BY SOUND. Acta Physica Sinica, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
Metrics
  • Abstract views:  4684
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  30 December 2020
  • Accepted Date:  06 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回