-
The modulation of electrical contact properties at the hole-selective contact represents a critical challenge for enhancing the efficiency of silicon heterojunction (SHJ) solar cells, particularly due to the complex carrier transport in the induced p-n junction at the p-layer/TCO interface. In this work, we systematically investigate the carrier transport behavior within the hole contact stack by employing TCAD numerical simulations. Both the majority- and minority-carrier analyzing models were built, based on the typical TLM (Transfer Length Method) and CSM (Cox and Strack Method) architectures, specifically. Our findings reveal that the activation energy (Ea,p) of p-layer is a decisive parameter governing the carrier transport dynamics. A lower Ea,p (e.g., 100 meV) significantly reduces the hole transport barrier at the p-layer/TCO interface, facilitating dominant band-to-band tunneling (B2BT) or dangling-bond-assisted trap-assisted tunneling (TAT-DBS), while simultaneously optimizing band bending at the i-a-Si:H/c-Si interface to enhance hole collection efficiency. These synergistic effects not only significantly reduce the contact resistivity but also suppress the parasitic electron current under high forward bias, thereby maintaining excellent carrier selectivity over a wide voltage range. From an optical perspective, a lower Ea,p broadens the selection window for transparent conductive oxide (TCO) materials, as it allows the use of TCO films with lower carrier concentration, thereby effectively mitigating parasitic absorption. This study clarifies the carrier transport mechanism at the hole-selective contact and establishes key material design criteria, providing vital theoretical guidance and practical strategies for the interface engineering and performance optimization of next-generation high-efficiency SHJ solar cells, as validated by experimental trends in recent high-efficiency devices.
-
Keywords:
- Silicon heterojunction solar cells /
- Numerical simulations /
- Contact resistivity /
- Transport mechanisms
-
[1] Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, Xu X 2023 Nat. Energy 8 789
[2] Wang G, Su Q, Tang H, Wu H, Lin H, Han C, Wang T, Xue C, Lu J, Fang L, Li Z, Xu X, Gao P 2024 Nat. Commun 15 8931
[3] Wu H, Ye F, Yang M, Luo F, Tang X, Tang Q, Qiu H, Huang Z, Wang G, Sun Z, Lin H, Wei J, Li Y, Tian X, Zhang J, Xie L, Deng X, Yuan T, Yu M, Liu Y, Li P, Chen H, Zhou S, Xu Q, Li P, Duan J, Chen J, Li C, Yin S, Liu B, Sun C, Su Q, Wang Y, Deng H, Xie T, Gao P, Kang Q, Zhang Y, Yan H, Yuan N, Peng F, Yuan Y, Ru X, He B, Chen L, Wang J, Lu J, Qu M, Xue C, Ding J, Fang L, Li Z, Xu X 2024 Nature 635 604
[4] Wang G, Yu M, Wu H, Li Y, Xie L, Wei J, Deng X, Zhou S, Yuan T, Luo F, Yuan Y, Huang Z, Tang X, Tang Q, Yin S, Qiu H, Liu Y, Yang M, Sun C, Wu L, Lin H, Tang H, Liu Q, Liu H, Chen J, Ru X, Ye F, Qu M, Wang J, Lu J, He B, Chen L, Xue C, Gao P, He D, Fang L, Xu X, Li Z 2025 Nature 647 369
[5] Allen T G, Bullock J, Yang X, Javey A, De Wolf S 2019 Nat. Energy 4 914
[6] Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270
[7] Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y 2022 Adv. Energy Mater 12 2200015
[8] Long W, Yin S, Peng F, Yang M, Fang L, Ru X, Qu M, Lin H, Xu X 2021 Sol. Energy Mater. Sol. Cells 231 111291
[9] YUAN H, CHEN X, LIANG B, SUN A, WANG X, ZHAO Y, ZHANG X 2025 Acta Phys. Sin. 74 047801(in Chinese)[袁赫泽, 陈新亮, 梁柄权, 孙爱鑫, 王雪骄, 赵颖, 张晓丹 2025 物理学报 74 047801]
[10] Schulze T F, Korte L, Conrad E, Schmidt M, Rech B 2010 J. Appl. Phys. 107 023711
[11] Muralidharan P, Leilaeioun M A, Weigand W, Holman Z C, Goodnick S M, Vasileska D 2020 IEEE J. Photovoltaics 10 363
[12] Varache R, Kleider J P, Gueunier-Farret M E, Korte L 2013 MAT SCI ENG B-ADV 178 593
[13] Madani Ghahfarokhi O, Von Maydell K, Agert C 2014 Appl. Phys. Lett 104 113901
[14] Bivour M, Schröer S, Hermle M 2013 Energy Procedia 38 658
[15] Ritzau K U, Bivour M, Schröer S, Steinkemper H, Reinecke P, Wagner F, Hermle M 2014 Sol. Energy Mater. Sol. Cells 131 9
[16] Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11
[17] Procel P, Xu H, Saez A, Ruiz‐Tobon C, Mazzarella L, Zhao Y, Han C, Yang G, Zeman M, Isabella O 2020 Prog Photovolt Res Appl 28 935
[18] Procel P, Yang G, Isabella O, Zeman M 2018 Sol. Energy Mater. Sol. Cells 186 66
[19] Luderer C, Tutsch L, Messmer C, Hermle M, Bivour M 2021 IEEE J. Photovoltaics 11 329
[20] Lachenal D, Baetzner D, Frammelsberger W, Legradic B, Meixenberger J, Papet P, Strahm B, Wahli G 2016 Energy Procedia 92 932
[21] Cox R H, Strack H 1967 Solid-State Electron 10 1213
[22] Wang W, Lin H, Yang Z, Wang Z, Wang J, Zhang L, Liao M, Zeng Y, Gao P, Yan B, Ye J 2019 IEEE J. Photovoltaics 9 1113
[23] Gao T, Geng Q, Gao Z, Li Y, Chen L, Li M 2021 ACS Appl. Energy Mater. 4 12543
[24] Rached D, Rahal W L 2020 OPTIK 223 165575
[25] Richter A, Werner F, Cuevas A, Schmidt J, Glunz S W 2012 Energy Procedia 27 88
[26] Klaassen D B M 1992 Solid-State Electron 35 953
[27] Shannon J M, Nieuwesteeg K J B M 1993 Appl. Phys. Lett. 62 1815
Metrics
- Abstract views: 41
- PDF Downloads: 1
- Cited By: 0









下载: