搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢离子注入GaN HEMT栅极正向输运、退化与击穿研究

张东楷 胡晴 郭玉龙 翟颖 刘栩珊 王梓旭 于国浩 闫大为

引用本文:
Citation:

氢离子注入GaN HEMT栅极正向输运、退化与击穿研究

张东楷, 胡晴, 郭玉龙, 翟颖, 刘栩珊, 王梓旭, 于国浩, 闫大为

Study on Forward Transport,Degradation and Breakdown of Hydrogen-Ion-Implanted GaN HEMT Gate

Zhang Dongkai, Hu Qing, Guo Yulong, Zhai Ying, Liu Xushan, Wang Zixu, YU Guohao, Yan Dawei
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 本文基于氢等离子体注入技术实现了增强型p-GaN HEMT向耗尽型器件的转变,研究了栅极正向电流的输运、电流退化与击穿行为。通过变温电流-电压(T-I-V)扫描、低频噪声测试与锁相红外成像技术,获得以下结果:1)在双对数坐标系下栅极正向T-I-V曲线呈显著幂律关系,斜率对温度不敏感,对应热激活能仅约52 meV,电流噪声具有典型1/f特性,表明正向电流应主要为缺陷辅助跳跃电流;2)在长时间正向栅压应力作用下,器件I-V特性退化为典型整流特性,表明局部高阻GaN区重新形成p-GaN。半对数坐标系下,电流线性区的理想因子高达2.6,电流噪声谱具有1/f特性,证明缺陷辅助隧穿电流成为主要输运机制;3)通过锁相红外成像技术精准定位击穿“热点”位置,并结合逐像素温度矫正技术测得“热点”处真实温度。
    For GaN digital circuits, the p-GaN HEMT is widely adopted as an enhancement-mode device. To convert enhancement-mode devices into depletion-mode ones, conventional approaches to achieve depletion-mode operation rely on high-energy ion etching to selectively remove portions of the p-GaN layer. However, this etching process tends to induce surface lattice damage and elevated interface state density, which can form gate-edge leakage paths. These issues contribute to increased dynamic on-resistance and compromised long-term reliability. Instead, hydrogen ion implantation has been introduced as a non-destructive doping modulation technique to mitigate these challenges. In view of this, this study utilized hydrogen ion implanted technology to achieve the transition of enhancement-mode p-GaN HEMTs to depletion-mode HEMTs. By employing temperature-dependent current-voltage (T-I-V) sweeping, low-frequency noise analysis, and lock-in infrared imaging techniques, the forward current transport, degradation and breakdown behaviors were investigated. The results show that: 1) The gate forward T-I-V curves exhibited a significant power-law relationship in double logarithmic coordinates, the current slope is insensitive to temperature, and the activation energy is derived to be ~ 52 meV. Neither of the classic pn junction theory and the space charge limited current model could explain the current behavior, whereas a defect-mediated electron hopping mechanism was identified as the dominant transport mechanism. 2) A long term of gate bias stress led to the degradation into a typical rectifying behavior, indicating the reformation of p-GaN region at certain region. The forward current has an ideality factor of ~2.6 and a typical 1/f noise spectra, indicating the dominant defect-assisted tunneling current. 3) High gate bias induced a current breakdown. The lock-in infrared imaging and pixel-by-pixel correction techniques were used to obtain the breakdown site and the "hot spots" temperature, respectively.
  • [1]

    Shen L, Heikman S, Moran B, Coffie R, Zhang N Q, Buttari D, Smorchkova I P, Keller S, DenBaars S.P, Mishra U K 2001 IEEE Electron Device Lett. 22 457

    [2]

    Ahmed N, Dutta G. 2024 Microelectron. J. 143 106047

    [3]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334

    [4]

    Mishra U K, Parikh P, Wu Y F. 2002 Proc. IEEE 90 1022

    [5]

    Cai Y, Cheng Z, Tang W C W, Lau K M, Chen K J 2006 IEEE Trans. Electron Device 53 2223

    [6]

    Tang G, Kwan A M H, Wong R K Y, Lei J C, Su R Y, Yao F W, Lin Y M, Yu J L, Tsai T, Tuan H C, Kalnitsky A, Chen K J 2017 IEEE Electron Device Lett. 38 1282

    [7]

    Hao R H, Li W Y, Fu K, Yu G H, Song L, Yuan J, Li J S, Deng X G, Zhang X D, Zhou Q, Fan Y M, Shi W H, Cai Y, Zhang X P, Zhang B S 2017 IEEE Electron Device Lett. 38 1567

    [8]

    Huang X J, Xing Y H, Yu G H, Song L, Huang R, Huang Z L, Han J, Zhang B S, Fan Y M 2020 Acta Phys. Sin. 71 108501(in Chinese) [黄兴杰 邢艳辉 于国浩 宋亮 黄荣 黄增立 韩军 张宝顺 范亚明 2020 物理学报 71 108501]

    [9]

    Gu Y T, Wang Y Q, Chen J X, Chen J X, Chen B L, Wang M J, Zou X B 2021 IEEE Trans. Electron Devices 68 3290

    [10]

    Wen Q, Zheng X, Meng X, Feng S W, Xu P, Zhang Y M 2024 Microelectron. Reliab. 152 115298

    [11]

    Lee J, Bosman G 2003 Solid-State Electron. 47 1973

    [12]

    Liu J Y, Liu Y, Wang F, Wang Y. 2015 Infrared Phys. Techn. 71 448.

    [13]

    Scheer R 2009 J. Appl. Phys. 105 104505

    [14]

    Shen X M, Zhao D G, Liu Z S, Hu Z F, Yang H, Liang J W 2005 Solid-State Electron. 49 847

    [15]

    Xia X Y, Xian M H, Fares C, Ren F, Tadjer M, Pearton S J 2021 J. Vac. Sci. Technol. A. 39 053405

    [16]

    Lai Y M, Li H P, Kim D K, Diroll B T, Murray C B, Kagan C R 2014 ACS Nano. 8 9664

    [17]

    Zhao L N, Chen L L, Yu G H, Yan D W, Yang G F, Gu X F, Liu B, Lu H 2017 IEEE Photon. Technol. Lett. 29 1447

    [18]

    Chen L L, Jin N, Yan D W, Cao Y R, Zhao L N, Liang H L, Liu B, Zhang E X, Gu X F, Schrimpf R D, Fleetwood D M, Lu H 2020 IEEE Trans. Electron. Dev. 67 841

    [19]

    Mazumdar K, Kala S, Ghosal A 2018 Superlattices Microstruct. 125 120

    [20]

    Xu C 2008 M.S. Thesis (Beijing: Capital Normal University) (in Chinese) [徐川 2008 硕士学位论文 (北京: 首都师范大学)]

    [21]

    Vellvehi M, Perpiñà X, Lauro G L, Perillo F, Jordà X 2011 Rev. Sci. Instrum. 82 114901

  • [1] 黄兴杰, 邢艳辉, 于国浩, 宋亮, 黄荣, 黄增立, 韩军, 张宝顺, 范亚明. 具有阻挡层的H等离子体处理增强型p-GaN栅AlGaN/GaN HEMT研究. 物理学报, doi: 10.7498/aps.71.20212192
    [2] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, doi: 10.7498/aps.70.20201467
    [3] 王洪广, 柳鹏飞, 张建威, 李永东, 曹亦兵, 孙钧. 收集极释气对相对论返波管影响的粒子模拟. 物理学报, doi: 10.7498/aps.68.20190554
    [4] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析. 物理学报, doi: 10.7498/aps.67.20171701
    [5] 刘艺, 杨佳, 李兴, 谷伟, 高志鹏. 微秒脉冲电场下Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3陶瓷击穿过程电阻变化规律. 物理学报, doi: 10.7498/aps.66.117701
    [6] 张力, 林志宇, 罗俊, 王树龙, 张进成, 郝跃, 戴扬, 陈大正, 郭立新. 具有p-GaN岛状埋层耐压结构的横向AlGaN/GaN高电子迁移率晶体管. 物理学报, doi: 10.7498/aps.66.247302
    [7] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制. 物理学报, doi: 10.7498/aps.64.137701
    [8] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, doi: 10.7498/aps.64.127303
    [9] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, doi: 10.7498/aps.63.010701
    [10] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, doi: 10.7498/aps.62.187302
    [11] 段宝兴, 杨银堂, 陈敬. F离子注入新型Al0.25Ga0.75 N/GaN HEMT 器件耐压分析. 物理学报, doi: 10.7498/aps.61.227302
    [12] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, doi: 10.7498/aps.61.070202
    [13] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究. 物理学报, doi: 10.7498/aps.60.067302
    [14] 谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华. 高场应力及栅应力下AlGaN/GaN HEMT器件退化研究. 物理学报, doi: 10.7498/aps.58.511
    [15] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, doi: 10.7498/aps.58.1219
    [16] 沈自才, 孔伟金, 冯伟泉, 丁义刚, 刘宇明, 郑慧奇, 赵雪, 赵春晴. 热控涂层光学性能退化模型研究. 物理学报, doi: 10.7498/aps.58.860
    [17] 郭亮良, 冯 倩, 郝 跃, 杨 燕. 高击穿电压的AlGaN/GaN FP-HEMT研究与分析. 物理学报, doi: 10.7498/aps.56.2895
    [18] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究. 物理学报, doi: 10.7498/aps.56.4117
    [19] 李蕾蕾, 刘红侠, 于宗光, 郝 跃. 恒流应力下E2PROM隧道氧化层的退化特性研究. 物理学报, doi: 10.7498/aps.55.2459
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, doi: 10.7498/aps.51.629
计量
  • 文章访问数:  24
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-18

/

返回文章
返回