-
本文基于氢等离子体注入技术实现了增强型p-GaN HEMT向耗尽型器件的转变,研究了栅极正向电流的输运、电流退化与击穿行为。通过变温电流-电压(T-I-V)扫描、低频噪声测试与锁相红外成像技术,获得以下结果:1)在双对数坐标系下栅极正向T-I-V曲线呈显著幂律关系,斜率对温度不敏感,对应热激活能仅约52 meV,电流噪声具有典型1/f特性,表明正向电流应主要为缺陷辅助跳跃电流;2)在长时间正向栅压应力作用下,器件I-V特性退化为典型整流特性,表明局部高阻GaN区重新形成p-GaN。半对数坐标系下,电流线性区的理想因子高达2.6,电流噪声谱具有1/f特性,证明缺陷辅助隧穿电流成为主要输运机制;3)通过锁相红外成像技术精准定位击穿“热点”位置,并结合逐像素温度矫正技术测得“热点”处真实温度。For GaN digital circuits, the p-GaN HEMT is widely adopted as an enhancement-mode device. To convert enhancement-mode devices into depletion-mode ones, conventional approaches to achieve depletion-mode operation rely on high-energy ion etching to selectively remove portions of the p-GaN layer. However, this etching process tends to induce surface lattice damage and elevated interface state density, which can form gate-edge leakage paths. These issues contribute to increased dynamic on-resistance and compromised long-term reliability. Instead, hydrogen ion implantation has been introduced as a non-destructive doping modulation technique to mitigate these challenges. In view of this, this study utilized hydrogen ion implanted technology to achieve the transition of enhancement-mode p-GaN HEMTs to depletion-mode HEMTs. By employing temperature-dependent current-voltage (T-I-V) sweeping, low-frequency noise analysis, and lock-in infrared imaging techniques, the forward current transport, degradation and breakdown behaviors were investigated. The results show that: 1) The gate forward T-I-V curves exhibited a significant power-law relationship in double logarithmic coordinates, the current slope is insensitive to temperature, and the activation energy is derived to be ~ 52 meV. Neither of the classic pn junction theory and the space charge limited current model could explain the current behavior, whereas a defect-mediated electron hopping mechanism was identified as the dominant transport mechanism. 2) A long term of gate bias stress led to the degradation into a typical rectifying behavior, indicating the reformation of p-GaN region at certain region. The forward current has an ideality factor of ~2.6 and a typical 1/f noise spectra, indicating the dominant defect-assisted tunneling current. 3) High gate bias induced a current breakdown. The lock-in infrared imaging and pixel-by-pixel correction techniques were used to obtain the breakdown site and the "hot spots" temperature, respectively.
-
Keywords:
- Hydrogen ion implanted /
- GaN HEMT /
- Transport Mechanism /
- Degradation /
- Breakdown
-
[1] Shen L, Heikman S, Moran B, Coffie R, Zhang N Q, Buttari D, Smorchkova I P, Keller S, DenBaars S.P, Mishra U K 2001 IEEE Electron Device Lett. 22 457
[2] Ahmed N, Dutta G. 2024 Microelectron. J. 143 106047
[3] Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 J. Appl. Phys. 87 334
[4] Mishra U K, Parikh P, Wu Y F. 2002 Proc. IEEE 90 1022
[5] Cai Y, Cheng Z, Tang W C W, Lau K M, Chen K J 2006 IEEE Trans. Electron Device 53 2223
[6] Tang G, Kwan A M H, Wong R K Y, Lei J C, Su R Y, Yao F W, Lin Y M, Yu J L, Tsai T, Tuan H C, Kalnitsky A, Chen K J 2017 IEEE Electron Device Lett. 38 1282
[7] Hao R H, Li W Y, Fu K, Yu G H, Song L, Yuan J, Li J S, Deng X G, Zhang X D, Zhou Q, Fan Y M, Shi W H, Cai Y, Zhang X P, Zhang B S 2017 IEEE Electron Device Lett. 38 1567
[8] Huang X J, Xing Y H, Yu G H, Song L, Huang R, Huang Z L, Han J, Zhang B S, Fan Y M 2020 Acta Phys. Sin. 71 108501(in Chinese) [黄兴杰 邢艳辉 于国浩 宋亮 黄荣 黄增立 韩军 张宝顺 范亚明 2020 物理学报 71 108501]
[9] Gu Y T, Wang Y Q, Chen J X, Chen J X, Chen B L, Wang M J, Zou X B 2021 IEEE Trans. Electron Devices 68 3290
[10] Wen Q, Zheng X, Meng X, Feng S W, Xu P, Zhang Y M 2024 Microelectron. Reliab. 152 115298
[11] Lee J, Bosman G 2003 Solid-State Electron. 47 1973
[12] Liu J Y, Liu Y, Wang F, Wang Y. 2015 Infrared Phys. Techn. 71 448.
[13] Scheer R 2009 J. Appl. Phys. 105 104505
[14] Shen X M, Zhao D G, Liu Z S, Hu Z F, Yang H, Liang J W 2005 Solid-State Electron. 49 847
[15] Xia X Y, Xian M H, Fares C, Ren F, Tadjer M, Pearton S J 2021 J. Vac. Sci. Technol. A. 39 053405
[16] Lai Y M, Li H P, Kim D K, Diroll B T, Murray C B, Kagan C R 2014 ACS Nano. 8 9664
[17] Zhao L N, Chen L L, Yu G H, Yan D W, Yang G F, Gu X F, Liu B, Lu H 2017 IEEE Photon. Technol. Lett. 29 1447
[18] Chen L L, Jin N, Yan D W, Cao Y R, Zhao L N, Liang H L, Liu B, Zhang E X, Gu X F, Schrimpf R D, Fleetwood D M, Lu H 2020 IEEE Trans. Electron. Dev. 67 841
[19] Mazumdar K, Kala S, Ghosal A 2018 Superlattices Microstruct. 125 120
[20] Xu C 2008 M.S. Thesis (Beijing: Capital Normal University) (in Chinese) [徐川 2008 硕士学位论文 (北京: 首都师范大学)]
[21] Vellvehi M, Perpiñà X, Lauro G L, Perillo F, Jordà X 2011 Rev. Sci. Instrum. 82 114901
计量
- 文章访问数: 24
- PDF下载量: 1
- 被引次数: 0








下载: