搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效硅异质结太阳电池中空穴传输端载流子输运机制:TCAD仿真研究

林驰 沈佳俊 唐旱波 林豪 高平奇 韩灿

引用本文:
Citation:

高效硅异质结太阳电池中空穴传输端载流子输运机制:TCAD仿真研究

林驰, 沈佳俊, 唐旱波, 林豪, 高平奇, 韩灿

Unraveling Carrier Transport Behavior at the Hole Contact for High-Performance Silicon Heterojunction Solar Cells: A TCAD Simulation Study

LIN Chi, SHEN Jiajun, TANG Hanbo, LIN Hao, GAO Pingqi, HAN Can
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 硅异质结(SHJ)太阳电池中空穴端接触的电接触性能调控是提升电池效率的关键挑战之一。本文采用TCAD数值模拟,通过构建多子端和少子端接触模型,系统研究了p型硅薄膜(p-layer)接触叠层中的载流子输运行为,重点揭示了诱导p-n结与寄生肖特基结的耦合作用机制及其对接触性能的影响。研究表明,p-layer的激活能(Ea,p)是决定载流子输运行为的核心参数。较低的Ea,p有利于在 p-layer/TCO 界面激发更有效的空穴隧穿方式(B2BT或TAT-DBS),并在 i-a-Si:H/c-Si界面引入更适合载流子输运的能带弯曲,这不仅显著降低了接触电阻,还抑制了高偏压下的电子电流,从而在宽偏压范围内维持了优异的载流子选择性。同时,在光学方面,低Ea,p有利于拓宽透明导电氧化物(TCO)薄膜的材料选择窗口,选择具有更低载流子浓度的TCO薄膜,从而有效抑制TCO膜层的寄生吸收,提升器件的光谱响应。本研究阐明了空穴传输端的载流子输运机理,明确了关键材料的调控准则,为高性能SHJ太阳电池的界面工程优化和器件设计提供了重要的理论依据与实践指导。
    The modulation of electrical contact properties at the hole-selective contact represents a critical challenge for enhancing the efficiency of silicon heterojunction (SHJ) solar cells, particularly due to the complex carrier transport in the induced p-n junction at the p-layer/TCO interface. In this work, we systematically investigate the carrier transport behavior within the hole contact stack by employing TCAD numerical simulations. Both the majority- and minority-carrier analyzing models were built, based on the typical TLM (Transfer Length Method) and CSM (Cox and Strack Method) architectures, specifically. Our findings reveal that the activation energy (Ea,p) of p-layer is a decisive parameter governing the carrier transport dynamics. A lower Ea,p (e.g., 100 meV) significantly reduces the hole transport barrier at the p-layer/TCO interface, facilitating dominant band-to-band tunneling (B2BT) or dangling-bond-assisted trap-assisted tunneling (TAT-DBS), while simultaneously optimizing band bending at the i-a-Si:H/c-Si interface to enhance hole collection efficiency. These synergistic effects not only significantly reduce the contact resistivity but also suppress the parasitic electron current under high forward bias, thereby maintaining excellent carrier selectivity over a wide voltage range. From an optical perspective, a lower Ea,p broadens the selection window for transparent conductive oxide (TCO) materials, as it allows the use of TCO films with lower carrier concentration, thereby effectively mitigating parasitic absorption. This study clarifies the carrier transport mechanism at the hole-selective contact and establishes key material design criteria, providing vital theoretical guidance and practical strategies for the interface engineering and performance optimization of next-generation high-efficiency SHJ solar cells, as validated by experimental trends in recent high-efficiency devices.
  • [1]

    Lin H, Yang M, Ru X, Wang G, Yin S, Peng F, Hong C, Qu M, Lu J, Fang L, Han C, Procel P, Isabella O, Gao P, Li Z, Xu X 2023 Nat. Energy 8 789

    [2]

    Wang G, Su Q, Tang H, Wu H, Lin H, Han C, Wang T, Xue C, Lu J, Fang L, Li Z, Xu X, Gao P 2024 Nat. Commun 15 8931

    [3]

    Wu H, Ye F, Yang M, Luo F, Tang X, Tang Q, Qiu H, Huang Z, Wang G, Sun Z, Lin H, Wei J, Li Y, Tian X, Zhang J, Xie L, Deng X, Yuan T, Yu M, Liu Y, Li P, Chen H, Zhou S, Xu Q, Li P, Duan J, Chen J, Li C, Yin S, Liu B, Sun C, Su Q, Wang Y, Deng H, Xie T, Gao P, Kang Q, Zhang Y, Yan H, Yuan N, Peng F, Yuan Y, Ru X, He B, Chen L, Wang J, Lu J, Qu M, Xue C, Ding J, Fang L, Li Z, Xu X 2024 Nature 635 604

    [4]

    Wang G, Yu M, Wu H, Li Y, Xie L, Wei J, Deng X, Zhou S, Yuan T, Luo F, Yuan Y, Huang Z, Tang X, Tang Q, Yin S, Qiu H, Liu Y, Yang M, Sun C, Wu L, Lin H, Tang H, Liu Q, Liu H, Chen J, Ru X, Ye F, Qu M, Wang J, Lu J, He B, Chen L, Xue C, Gao P, He D, Fang L, Xu X, Li Z 2025 Nature 647 369

    [5]

    Allen T G, Bullock J, Yang X, Javey A, De Wolf S 2019 Nat. Energy 4 914

    [6]

    Feldmann F, Bivour M, Reichel C, Hermle M, Glunz S W 2014 Sol. Energy Mater. Sol. Cells 120 270

    [7]

    Sun Z, Chen X, He Y, Li J, Wang J, Yan H, Zhang Y 2022 Adv. Energy Mater 12 2200015

    [8]

    Long W, Yin S, Peng F, Yang M, Fang L, Ru X, Qu M, Lin H, Xu X 2021 Sol. Energy Mater. Sol. Cells 231 111291

    [9]

    YUAN H, CHEN X, LIANG B, SUN A, WANG X, ZHAO Y, ZHANG X 2025 Acta Phys. Sin. 74 047801(in Chinese)[袁赫泽, 陈新亮, 梁柄权, 孙爱鑫, 王雪骄, 赵颖, 张晓丹 2025 物理学报 74 047801]

    [10]

    Schulze T F, Korte L, Conrad E, Schmidt M, Rech B 2010 J. Appl. Phys. 107 023711

    [11]

    Muralidharan P, Leilaeioun M A, Weigand W, Holman Z C, Goodnick S M, Vasileska D 2020 IEEE J. Photovoltaics 10 363

    [12]

    Varache R, Kleider J P, Gueunier-Farret M E, Korte L 2013 MAT SCI ENG B-ADV 178 593

    [13]

    Madani Ghahfarokhi O, Von Maydell K, Agert C 2014 Appl. Phys. Lett 104 113901

    [14]

    Bivour M, Schröer S, Hermle M 2013 Energy Procedia 38 658

    [15]

    Ritzau K U, Bivour M, Schröer S, Steinkemper H, Reinecke P, Wagner F, Hermle M 2014 Sol. Energy Mater. Sol. Cells 131 9

    [16]

    Bivour M, Reichel C, Hermle M, Glunz S W 2012 Sol. Energy Mater. Sol. Cells 106 11

    [17]

    Procel P, Xu H, Saez A, Ruiz‐Tobon C, Mazzarella L, Zhao Y, Han C, Yang G, Zeman M, Isabella O 2020 Prog Photovolt Res Appl 28 935

    [18]

    Procel P, Yang G, Isabella O, Zeman M 2018 Sol. Energy Mater. Sol. Cells 186 66

    [19]

    Luderer C, Tutsch L, Messmer C, Hermle M, Bivour M 2021 IEEE J. Photovoltaics 11 329

    [20]

    Lachenal D, Baetzner D, Frammelsberger W, Legradic B, Meixenberger J, Papet P, Strahm B, Wahli G 2016 Energy Procedia 92 932

    [21]

    Cox R H, Strack H 1967 Solid-State Electron 10 1213

    [22]

    Wang W, Lin H, Yang Z, Wang Z, Wang J, Zhang L, Liao M, Zeng Y, Gao P, Yan B, Ye J 2019 IEEE J. Photovoltaics 9 1113

    [23]

    Gao T, Geng Q, Gao Z, Li Y, Chen L, Li M 2021 ACS Appl. Energy Mater. 4 12543

    [24]

    Rached D, Rahal W L 2020 OPTIK 223 165575

    [25]

    Richter A, Werner F, Cuevas A, Schmidt J, Glunz S W 2012 Energy Procedia 27 88

    [26]

    Klaassen D B M 1992 Solid-State Electron 35 953

    [27]

    Shannon J M, Nieuwesteeg K J B M 1993 Appl. Phys. Lett. 62 1815

  • [1] 张东楷, 胡晴, 郭玉龙, 翟颖, 刘栩珊, 王梓旭, 于国浩, 闫大为. 氢离子注入GaN HEMT栅极正向输运、退化与击穿研究. 物理学报, doi: 10.7498/aps.75.20251343
    [2] 李诗文, 周豹, 赵啟融, 杨小波, 谢再新, 段卓琦, 赵恩铭, 胡永茂. 基于SCAPS-1D的钙钛矿太阳能电池性能的数值模拟与性能优化比较理论分析. 物理学报, doi: 10.7498/aps.74.20250335
    [3] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, doi: 10.7498/aps.71.20220031
    [4] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, doi: 10.7498/aps.70.20201467
    [5] 张博宇, 周佳凯, 任程超, 苏祥林, 任慧志, 赵颖, 张晓丹, 侯国付. 硅异质结太阳电池中钝化层和发射层的优化设计. 物理学报, doi: 10.7498/aps.70.20210674
    [6] 张翱, 张春秀, 陈云琳, 张春梅, 孟涛. 反式卤素钙钛矿太阳能电池光伏性能的理论研究. 物理学报, doi: 10.7498/aps.69.20200089
    [7] 李俊炜, 王祖军, 石成英, 薛院院, 宁浩, 徐瑞, 焦仟丽, 贾同轩. GaInP/GaAs/Ge三结太阳电池不同能量质子辐照损伤模拟. 物理学报, doi: 10.7498/aps.69.20191878
    [8] 潘洪英, 全知觉. p层空穴浓度及厚度对InGaN同质结太阳电池性能的影响机理研究. 物理学报, doi: 10.7498/aps.68.20191042
    [9] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟. 物理学报, doi: 10.7498/aps.68.20190173
    [10] 朱炳辉, 杨爱香, 牛书通, 陈熙萌, 周旺, 邵剑雄. 100 keV质子与低高能质子在绝缘微孔中输运特性的对比分析. 物理学报, doi: 10.7498/aps.67.20171701
    [11] 李铭杰, 高红, 李江禄, 温静, 李凯, 张伟光. 低温下单根ZnO纳米带电学性质的研究. 物理学报, doi: 10.7498/aps.62.187302
    [12] 贾玉坤, 杨仕娥, 郭巧能, 陈永生, 郜小勇, 谷锦华, 卢景霄. 非晶硅太阳电池宽光谱陷光结构的优化设计. 物理学报, doi: 10.7498/aps.62.247801
    [13] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, doi: 10.7498/aps.59.2582
    [14] 卓士创, 闫长春. 可见光紫端748 THz处的高透过率负折射率材料模拟研究. 物理学报, doi: 10.7498/aps.59.360
    [15] 周骏, 邸明东, 孙铁囤, 孙永堂, 汪昊. 界面缺陷态密度与衬底电阻率取值对硅异质结光伏电池性能的影响. 物理学报, doi: 10.7498/aps.59.8870
    [16] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, doi: 10.7498/aps.58.3268
    [17] 赵 雷, 周春兰, 李海玲, 刁宏伟, 王文静. a-Si(n)/c-Si(p)异质结太阳电池薄膜硅背场的模拟优化. 物理学报, doi: 10.7498/aps.57.3212
    [18] 杨红官, 施毅, 闾锦, 濮林, 张荣, 郑有. 锗/硅异质纳米结构中空穴存储特性研究. 物理学报, doi: 10.7498/aps.53.1211
    [19] 周玉刚, 沈波, 刘杰, 周慧梅, 俞慧强, 张荣, 施毅, 郑有炓. 用肖特基电容电压特性数值模拟法确定调制掺杂AlxGa1-xN/GaN异质结中的极化电荷. 物理学报, doi: 10.7498/aps.50.1774
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-25

/

返回文章
返回