-
GaN外延生长中的高位错密度与界面缺陷会加速器件可靠性退化。尤其在高温条件下,深能级缺陷被激活、载流子散射增强,使电学与射频特性进一步恶化,成为制约GaN HEMT性能提升的关键瓶颈。为此,本研究在AlGaN/GaN异质结与衬底之间引入由范德华外延的BN缓冲层,并与传统外延结构进行了全面对比。在动态偏压条件下,该结构展现出显著的陷阱抑制能力,电流崩塌仅约9.2%,阈值电压漂移低至0.09 V,导通电阻与跨导基本保持稳定。在125℃高温测试中,器件仍表现出良好可靠性,电流崩塌约31%,阈值仅负漂约0.5 V,跨导衰减和导通电阻升幅均明显低于对照器件。在室温静态特性方面,该结构使导通电阻降低约40%,最大输出电流与跨导峰值显著提升。射频性能同样增强: fT由48GHz提升至90 GHz,fmax由114 GHz提升至133 GHz。结果表明,该界面优化策略可同时改善载流子输运、抑制陷阱效应并提升射频性能,为实现高频、高功率、高可靠性的GaN HEMT提供了有效路径。Traditional GaN materials inevitably exhibit lattice mismatch and differing thermal expansion coefficients during epitaxial growth, which often leads to a sharp increase in dislocation density and interface defects. This results in severe current collapse, degraded high-frequency performance, and reliability degradation in GaN HEMT devices, representing one of the key bottlenecks facing GaN-based HEMT RF devices. Van der Waals epitaxial bonding between BN and GaN effectively suppresses dislocations and relieves material stress, playing a crucial role in enhancing the high-frequency performance and reliability of GaN HEMT devices. This paper fabricates AlGaN/GaN HEMT devices grown on BN buffer layers using van der Waals epitaxy. Test results indicate that compared to conventional devices without a BN buffer layer, not only has the on-resistance been reduced by 40% and the peak transconductance increased by 54%, but the maximum output current has also been boosted by 67%. Under strong negative gate voltage stress conditions, its performance significantly outperforms conventional devices, with a current collapse ratio of only 9.2%. During the pulse width reduction from 200 ms to 100 μs, only a minimal drift of approximately 0.09 V occurs. Under high-temperature conditions (125°C), the current collapse ratio is only 31%, with smaller reductions in transconductance and negative drift of Vth. The overall degradation is significantly lower than that of conventional AlGaN/GaN HEMT devices based on epitaxial systems, demonstrating excellent high-temperature dynamic stability. Additionally, RF performance improved, with fT increasing from 48 GHz to 90 GHz and fmax rising from 114 GHz to 133 GHz. This work fully demonstrates this interface optimization strategy simultaneously enhances carrier transport, suppresses trap effects, and improves RF performance, providing an effective pathway for realizing high-frequency, high-power, and highly reliable GaN HEMTs.
-
Keywords:
- current collapse /
- high temperature /
- GaN HEMT /
- van der Waals epitaxy
-
[1] Shinohara K, Regan D C, Tang Y, Corrion A L, Brown D F, Wong J C, Robinson J F, Fung H H, Schmitz A, Oh T C, Kim S J, Chen P S, Nagele R G, Margomenos A D, Micovic M 2013 IEEE Trans. Electron. Dev. 60 2982
[2] Chen K J, Häberlen O, Lidow A, Tsai C L, Ueda T, Uemoto Y, Wu Y F 2017 IEEE Trans. Electron. Dev. 64 779
[3] Sehra K, Chanchal, Anand A, Kumari V, Reeta, Gupta M, Mishra M, Rawal D S, Saxena M 2023 IEEE Trans. Electron. Dev. 70 2612
[4] Zhou Q, Jin Y, Shi Y Y, Mou J Y, Bao X, Chen B W, Zhang B 2015 IEEE Electron Device Lett. 36 660
[5] Basler M, Reiner R, Moench S, Waltereit P, Quay R, Kallfass I, Ambacher O 2020 IEEE Electron Device Lett. 41 993
[6] Tang Y, Shinohara K, Regan D, Andrea C, Brown D, Wong J, Schmitz A, Fung H, Kim S, Micovic M 2015 IEEE Electron Device Lett. 36 549
[7] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K, Parikh P 2004 IEEE Electron Device Lett. 25 117
[8] Wang P F, Mi M H, An S R, Zhou Y W, Chen Z H, Zhu Q, Du X, Chen Y L, Zhang M, Hou B, Liu R Q, Ma X H, Hao Y 2024 IEEE Electron Device Lett. 45 1717
[9] Wang Y J 2024 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [王彦君 2024 博士学位论文 (合肥:中国科学技术大学)]
[10] Imura M, Nakano K, Fujimoto N, Okada N, Balakrishnan K, Iwaya M, Kamiyama S, Amano H, Akasaki I, Noro T, Takagi T, Bandoh A 2007 Jpn. J. Appl. Phys. 46 1458
[11] Yang L Y, Huang W, Wang D, Zhang B Q, Zhang Y B, Zhang J Y, Chen T S, Ge W K, Wu S B, Shen B, Wang X Q 2023 ACS Appl. Electron. Mater 5 4786
[12] Vetury R, Zhang N Q, Keller S, Mishra U K 2001 IEEE Trans. Electron. Dev. 48 560
[13] Binari S C, Ikossi K, Roussos J A, Kruppa W, Park D, Dietrich H B, Koleske D D, Wickenden A E, Henry R L 2001 IEEE Trans. Electron. Dev. 48 465
[14] Wu J S, Lee C C, Wu C H, Kao M L, Weng Y C, Yang C Y, Luc Q H, Lee C T, Ueda D, Chang E Y 2021 IEEE Electron Device Lett. 42 1268
[15] Mahajan D, Khandelwal S 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) Padua, Italy, June 25-28, 2018 p1
[16] Lee H, Ryu H, Kang J Z, Zhu W J 2024 IEEE Electron Device Lett. 45 312
[17] Zhang Y C, Huang S, Wei K, Zhang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K, Liu X Y 2020 IEEE Electron Device Lett. 41 701
[18] Xu S, Xu S R, Wang X H, Lu H, Liu X, Yun B X, Zhang Y C, Zhang T, Zhang J C, Hao Y 2023 Acta Phys. Sin. 72 19601 (in Chinese) [徐爽 许晟瑞 王心颢 卢灏 刘旭 贠博祥 张雅超 张涛 张进成 郝跃 2023 物理学报 72 19601]
[19] Zhang Z R, Fang Y L, Yin J Y, Guo Y M, Wang B, Wang Y G, Li J, Lu W L, Gao N, Liu P, Feng Z H 2018 Acta Phys. Sin. 67 076801 (in Chinese) [张志荣 房玉龙 尹甲运 郭艳敏 王波 王元刚 李佳 芦伟立 高楠 刘沛 冯志红 2018 物理学报 67 076801]
[20] Utama M I B, Zhang Q, Zhang J, Yuan Y W, Belarre F J, Arbiolbc J, Xiong Q H 2013 Nanoscale 5 3570
[21] Wen Y, Ning J, Wu H D, Zhang H R, Cheng R Q, Yin L, Wang H, Zhang X L, Liu Y, Wang D, Hao Y, Zhang J C, He J 2025 Advanced materials 37(38) 2501916
[22] Makimoto T, Kumakura K, Kobayashi Y, Akasaka T, Yamamoto H 2012 Appl. Phys. Express 5 072102
[23] Wu J X, Li P X, Xu S R, Zhou X W, Tao H C, Yue W K, Wang Y L, Wu J T, Zhang Y C, Hao Y 2020 Materials 13 5118
[24] Liu F, Yu Y, Zhang Y T, Rong X, Wang T, Zheng X T, Sheng B W, Yang L Y, Wei J Q, Wang X P, Li X B, Yang X L, Xu F J, Qin Z X, Zhang Z H, Shen B, Wang X Q 2020 Adv. Sci. 7 2000917
[25] Zaiter A, Michon A, Nemoz M, Courville A, Vennéguès P, Ottapilakkal V, Vuong P, Sundaram S, Ougazzaden A, Brault J 2022 Materials 15 8602
[26] Lv C W, Wang J J, Gu J B 2019 Acta Phys. Sin. 68 077102 (in Chinese) [吕常伟 王臣菊 顾建兵 2019 物理学报 68 077102]
[27] Zhang H R, Ning J, Li S Y, Shen X, Zhang Y N, Wan Z Y, Wang D, Hao Y, Zhang J C 2025 IEEE Electron Device Lett. 46 1693
[28] Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223
[29] Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T, Yamamoto H 2014 Appl. Phys. Lett. 105 1214
[30] Paduano Q, Snure M, Siegel G, Thomson D, Look D 2016 J. Mater. Res. 31 2204
[31] Glavin N R, Chabak K D, Heller E R, Moore E A, Prusnick T A, Maruyama B, Walker D E, Dorsey D L, Paduano Q, Snure M 2017 Adv. Mater. 29 1701838
[32] Ravi L, Rather M A, Lin K L, Wu C T, Yu T Y, Lai K Y, Chyi J I 2023 ACS Appl. Electron. Mater. 5 146
[33] Bai L, Ning J, Wu H D, Wang B Y, Wang D, Li Z H, HaoY, Zhang J C 2024 Scripta Materialia 248 116150
[34] Kobayashi Y, Kumakura K, Akasaka T, Makimoto T 2012 Nature 484 223
[35] Geim A K, Grigorieva I V 2013 Nature 499 419
[36] Yin Y, Ren F, Wang Y Y, Liu Z Q, Ao J P, Liang M, Wei T B, Yuan G D, Ou H Y, Yan J C, Yi X Y, Wang J X, Li J M 2018 Materials 11 2464
[37] Wu H D, Ning J, Zhang J C, Zeng Y, Jia Y Q, Zhao J L, Bai L, Wang Y B, Li S Y, Wang D, Hao Y 2023 Nanotechnology 34 295202
[38] Hino T, Tomiya S, Miyajima T, Yanashima K, Hashimoto S, Ikeda M 2000 Appl. Phys. Lett. 76 3421
[39] Hiroki M, Kumakura K, Kobayashi Y, Akasaka T, Makimoto T, Yamamoto H 2014 Appl. Phys. Lett. 105 193509
[40] Ning J, Yang Z C, Wu H D, Dong X M, Zhang Y N, Chen Y F, Zhang X B,Wang D, Hao Y, Zhang J C 2025 Nature Communications 16 8144
[41] Yang S, Liu S H, Lu Y Y, Liu C, Chen K J 2015 IEEE Trans. Electron. Dev. 62 1870
[42] Chini A, Meneghesso G, Meneghini M, Fantini F, Verzellesi G, Patti A, Iucolano F 2016 IEEE Trans. Electron. Dev. 63 3473
[43] Kanegae K, Fujikura H, Otoki Y, Konno T, Yoshida T, Horita M, Kimoto T, Suda J 2019 Appl. Phys. Lett. 115 012103
[44] Yang S, Huang S, Wei J, Zheng Z Y, Wang Y R, He J B, Chen K J 2020 IEEE Electron Device Lett. 41 685
[45] Alavijeh A S, Nunes L C, Pedro J C 2024 IEEE Asia-Pacific Microwave Conference (APMC) Bali, Indonesia, November 17-20, p43
[46] Kohlhepp B, Wieczorek N, Geng X M, Böcker J, Dieckerhoff S 2025 Energy Conversion Congress & Expo Europe (ECCE Europe) Birmingham, United Kingdom, August 31 to September 4, p1
[47] Subramani N K, Sahoo A K, Nallatamby J C, Sommet R, Quéré R 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Lisbon, Portugal, June 27-30, p1
[48] He J Q, Wang Q, Zhou G N, Li W M, Jiang Y, Qiao Z P, Tang C Y, Li G, Yu H Y 2022 IEEE Electron Device Lett. 43 529
[49] Song C A, Yang W, Wang W J, Liao J L, Wu P, Jiang H X, Jiang S, Li B 2025 IEEE Electron Device Lett. 46 1289
计量
- 文章访问数: 39
- PDF下载量: 2
- 被引次数: 0








下载: