搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含氘电极真空弧等离子体空间分布特性诊断研究

李杰 郑乐 董攀 龙继东 王韬 刘飞翔

引用本文:
Citation:

含氘电极真空弧等离子体空间分布特性诊断研究

李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔

Spatial distribution characteristics of vacuum arc plasma with occluded deuterium electrode

Li Jie, Zheng Le, Dong Pan, Long Ji-Dong, Wang Tao, Liu Fei-Xiang
PDF
HTML
导出引用
  • 真空弧放电等离子体含有多种离子成分, 并且各离子在空间上具有不同的分布规律. 本文针对金属氘化物电极真空弧离子源, 搭建了一台紧凑型磁分析装置, 用来研究放电等离子体中氘离子与金属离子的空间分布. 当离子源弧流为100 A左右时, 该装置能有效地传输引出束流, 并且具有较好的二次电子抑制效果, 可准确获得各离子流强. 利用该装置测量并获得了氘化钛含氘电极真空弧放电等离子体内氘离子和钛离子空间分布规律, 结果表明: 径向上, 氘离子和钛离子都呈高斯分布, 但氘离子分布均匀, 而钛离子相对集中在轴线附近, 导致轴线附近氘离子比例最低; 轴向上, 所有离子数量都以自然指数函数减少, 而且相对幅度接近, 所以氘离子比例几乎不变. 本文研究结果不仅有助于理解真空弧放电等离子体膨胀过程, 还可以指导金属氘化物电极真空弧离子源及其引出设计.
    There are many kinds of ions in vacuum arc discharge plasma, which have different distributions in space. In this paper, a compact magnetic analyzer is developed for studying the spatial distribution of deuterium ions and metal ions in vacuum arc discharge with occluded deuterium electrode. When the arc current is about 100 A, the device can effectively transfer the ion beam with good secondary electron suppression, and can accurately obtain the ion current intensity. The spatial distribution of deuterium ions and titanium ions in the vacuum arc discharge with TiD electrode are measured by this device. The results show that both deuterium ions and Titanium ions are Gaussian distribution in the radial direction, but deuterium ions are evenly distributed, while titanium ions are relatively concentrated near the axis, resulting in the lowest proportion of deuterium ions near the axis. Along the axis, the number of all ions decreases as a natural exponential function, and the relative magnitudes are approximately equal, so the proportion of deuterium ions is almost constant. The results of this study not only help to understand the plasma expansion process of vacuum arc discharge, but also guide the design of vacuum arc ion source with occluded deuterium electrode and its ion extraction.
      通信作者: 董攀, panner95@163.com
    • 基金项目: 国家自然科学基金(批准号: 11735012, 11975217)资助的课题
      Corresponding author: Dong Pan, panner95@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11735012, 11975217).
    [1]

    Nazarov K M, Muhametuly B, Kenzhin E A, Kichanov S E, Kozlenko D P, Lukin E V, Shaimerdenov A A 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 982 164572Google Scholar

    [2]

    魏国海, 韩松柏, 陈东风, 王洪立, 郝丽杰, 武梅梅, 贺林峰, 王雨, 刘蕴韬, 孙凯, 赵志祥 2012 核技术 35 821

    Wei G H, Han S B, Chen D F, Wang H L, Hao L J, Wu M M, He L F, Wang Y, Liu Y T, Sun K, Zhao Z X 2012 Nucl. Tech. 35 821

    [3]

    Whetstone Z D, Kearfott K J 2014 J. Radioanal. Nucl. Chem. 301 629Google Scholar

    [4]

    Zaker S, Nafchi S, Rastegarnia M, Bagheri S, Sanati A, Naghibi A 2020 Petroleum 6 170Google Scholar

    [5]

    El-Taher A, Khater A E M 2016 Appl. Radiat. Isot. 114 121Google Scholar

    [6]

    王刚, 于前锋, 王文, 宋钢, 吴宜灿 2015 物理学报 64 102901

    Wang G, Yu Q F, Wang W, Song G, Wu Y C 2015 Acta Phys. Sin. 64 102901

    [7]

    Walko R J, Rochau G E 1981 IEEE Trans. Nucl. Sci. 28 531

    [8]

    Aleksandrov V D, Bogolubov E P, Bochkarev O V, Korytko L A, Nazarov V I, Polkanov Y G, Ryzhkov V I, Khasaev T O 2005 Appl. Radiat. Isot. 63 537Google Scholar

    [9]

    Shkol’nik S M 2001 IEEE Trans. Plasma Sci. 29 675Google Scholar

    [10]

    Barengolts S A, Karnaukhov D Y, Nikolaev A G, Savkin K P, Oks E M, Uimanov I V, Frolova V P, Shmelev D L, Yushkov G Y 2015 Tech. Phys. 60 989Google Scholar

    [11]

    Nikolaev A G, Oks E M, Frolova V P, Yushkov G Y 2019 Russ. Phys. J. 62 1109Google Scholar

    [12]

    Nikolaev A G, Yushkov G Y, Savkin K P Oks E M 2012 Rev. Sci. Instrum. 83 02A503Google Scholar

    [13]

    Nikolaev A G, Yushkov G Y, Savkin K P Oks E M 2013 IEEE Trans. Plasma Sci. 41 1923Google Scholar

    [14]

    Nikolaev A G, Savkin K P, Yushkovet G Y, Oks E M 2014 Rev. Sci. Instrum. 85 02B501Google Scholar

    [15]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar

    [16]

    Chen L, Jin D Z, Cheng L Shi L, Tan X H, Xiang W, Dai J Y, Hu S D 2012 Vacuum 86 813Google Scholar

    [17]

    Lan C H, Long J D, Zheng L, Peng Y F, Li J, Yang Z, Dong P 2014 Chin. Phys. Lett. 31 105202Google Scholar

    [18]

    Lan C H, Long J D, Zheng L, Dong P, Yang Z, Wang T, Li J 2015 Chin. Phys. Lett. 32 095201Google Scholar

    [19]

    郑乐, 蓝朝晖, 龙继东, 彭宇飞, 李杰, 杨振, 董攀, 石金水 2014 核技术 37 010202Google Scholar

    Zheng L, Lan C H, Long J D, Peng Y F, Li J, Yang Z, Dong P, Shi J S 2014 Nucl. Tech. 37 010202Google Scholar

    [20]

    张华顺 1987 离子源和大功率中性束源 (北京: 原子能出版社) 第93−100页

    Zhang H S 1987 Ion Source with High-Power Neutral Beam Sources (Beijing: Atomic Energy Press) pp93−100 (in Chinese)

    [21]

    刘猛, 柯建林, 黄刚, 梁建华, 刘湾, 娄本超, 卢彪 2012 核电子学与探测技术 32 786Google Scholar

    Liu M, Ke J L, Huang G, Liang J H, Liu W, Lou B C, Lu B 2012 Nucl. Electron. Detect. Technol. 32 786Google Scholar

  • 图 1  磁分析装置示意图(1-离子源, 2-引出电极, 3-地电极, 4-磁铁区域, 5-金属离子收集极, 6-氘离子收集极, 7-氢离子收集极, 8-三维位移平台)

    Fig. 1.  Schematic of the magnetic analysis device (1-ion source, 2- extraction electrode, 3-grounding electrode, 4- magnetic field area, 5-collector for metal ions, 6-collector for deuterium ions, 7-collector for hydrogen ions, 8-three dimensional displacement platform).

    图 2  引出离子束的传输通道示意图

    Fig. 2.  Schematic of the transmission channel for ion beam extract from the ion source.

    图 3  离子束轰击闪烁体形成的发光区域照片 (a) 闪烁体放置在距离地电极后3 mm位置; (b) 闪烁体放置在收集极处

    Fig. 3.  Photos of the cross section of ion beam on fluorescent screen: (a) The fluorescent screen was set at the position of 3 mm after the grounding electrode; (b) the fluorescent screen was set at the position of the collectors.

    图 4  收集极上的总平均电流随偏压的变化趋势(偏压从–30V到30 V变化)

    Fig. 4.  Average total collected current versus bias voltage from –30 to 30 V.

    图 5  收集极上的各离子电流信号波形(放电弧流为100 A)

    Fig. 5.  Typical waveforms of the ion current collected by each collector while the discharging current is 100 A.

    图 6  氢、氘和钛离子密度径向分布

    Fig. 6.  Radial density distribution of H, D and Ti ions.

    图 7  氘离子比例径向分布

    Fig. 7.  Radial distribution of the D ion ratio.

    图 8  氢、氘和钛离子密度轴向分布

    Fig. 8.  Axial density distribution of H, D and Ti ions.

    图 9  氘离子比例轴向分布

    Fig. 9.  Axial distribution of the D ion ratios.

  • [1]

    Nazarov K M, Muhametuly B, Kenzhin E A, Kichanov S E, Kozlenko D P, Lukin E V, Shaimerdenov A A 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 982 164572Google Scholar

    [2]

    魏国海, 韩松柏, 陈东风, 王洪立, 郝丽杰, 武梅梅, 贺林峰, 王雨, 刘蕴韬, 孙凯, 赵志祥 2012 核技术 35 821

    Wei G H, Han S B, Chen D F, Wang H L, Hao L J, Wu M M, He L F, Wang Y, Liu Y T, Sun K, Zhao Z X 2012 Nucl. Tech. 35 821

    [3]

    Whetstone Z D, Kearfott K J 2014 J. Radioanal. Nucl. Chem. 301 629Google Scholar

    [4]

    Zaker S, Nafchi S, Rastegarnia M, Bagheri S, Sanati A, Naghibi A 2020 Petroleum 6 170Google Scholar

    [5]

    El-Taher A, Khater A E M 2016 Appl. Radiat. Isot. 114 121Google Scholar

    [6]

    王刚, 于前锋, 王文, 宋钢, 吴宜灿 2015 物理学报 64 102901

    Wang G, Yu Q F, Wang W, Song G, Wu Y C 2015 Acta Phys. Sin. 64 102901

    [7]

    Walko R J, Rochau G E 1981 IEEE Trans. Nucl. Sci. 28 531

    [8]

    Aleksandrov V D, Bogolubov E P, Bochkarev O V, Korytko L A, Nazarov V I, Polkanov Y G, Ryzhkov V I, Khasaev T O 2005 Appl. Radiat. Isot. 63 537Google Scholar

    [9]

    Shkol’nik S M 2001 IEEE Trans. Plasma Sci. 29 675Google Scholar

    [10]

    Barengolts S A, Karnaukhov D Y, Nikolaev A G, Savkin K P, Oks E M, Uimanov I V, Frolova V P, Shmelev D L, Yushkov G Y 2015 Tech. Phys. 60 989Google Scholar

    [11]

    Nikolaev A G, Oks E M, Frolova V P, Yushkov G Y 2019 Russ. Phys. J. 62 1109Google Scholar

    [12]

    Nikolaev A G, Yushkov G Y, Savkin K P Oks E M 2012 Rev. Sci. Instrum. 83 02A503Google Scholar

    [13]

    Nikolaev A G, Yushkov G Y, Savkin K P Oks E M 2013 IEEE Trans. Plasma Sci. 41 1923Google Scholar

    [14]

    Nikolaev A G, Savkin K P, Yushkovet G Y, Oks E M 2014 Rev. Sci. Instrum. 85 02B501Google Scholar

    [15]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar

    [16]

    Chen L, Jin D Z, Cheng L Shi L, Tan X H, Xiang W, Dai J Y, Hu S D 2012 Vacuum 86 813Google Scholar

    [17]

    Lan C H, Long J D, Zheng L, Peng Y F, Li J, Yang Z, Dong P 2014 Chin. Phys. Lett. 31 105202Google Scholar

    [18]

    Lan C H, Long J D, Zheng L, Dong P, Yang Z, Wang T, Li J 2015 Chin. Phys. Lett. 32 095201Google Scholar

    [19]

    郑乐, 蓝朝晖, 龙继东, 彭宇飞, 李杰, 杨振, 董攀, 石金水 2014 核技术 37 010202Google Scholar

    Zheng L, Lan C H, Long J D, Peng Y F, Li J, Yang Z, Dong P, Shi J S 2014 Nucl. Tech. 37 010202Google Scholar

    [20]

    张华顺 1987 离子源和大功率中性束源 (北京: 原子能出版社) 第93−100页

    Zhang H S 1987 Ion Source with High-Power Neutral Beam Sources (Beijing: Atomic Energy Press) pp93−100 (in Chinese)

    [21]

    刘猛, 柯建林, 黄刚, 梁建华, 刘湾, 娄本超, 卢彪 2012 核电子学与探测技术 32 786Google Scholar

    Liu M, Ke J L, Huang G, Liang J H, Liu W, Lou B C, Lu B 2012 Nucl. Electron. Detect. Technol. 32 786Google Scholar

  • [1] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化. 物理学报, 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [2] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟. 物理学报, 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [3] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型. 物理学报, 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [4] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔. 含氘电极真空弧等离子体空间分布特性诊断研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211835
    [5] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验. 物理学报, 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [6] 杨超, 印茂伟, 尚丽萍, 王卫, 刘毅, 夏连胜, 邓建军. 多峰场负氢离子源磁体布局对等离子体特性影响的数值模拟研究. 物理学报, 2015, 64(8): 085203. doi: 10.7498/aps.64.085203
    [7] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究. 物理学报, 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [8] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究. 物理学报, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [9] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. J-PARC多峰离子源体积产生效率三维数值模拟研究. 物理学报, 2012, 61(18): 185204. doi: 10.7498/aps.61.185204
    [10] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究. 物理学报, 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [11] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. JAERI 10 A 离子源体积产生效率数值优化. 物理学报, 2012, 61(18): 185205. doi: 10.7498/aps.61.185205
    [12] 杨超, 刘大刚, 陈颖, 夏蒙重, 王学琼, 王小敏. 多峰离子源的三维数值模拟优化与设计. 物理学报, 2012, 61(13): 135203. doi: 10.7498/aps.61.135203
    [13] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究. 物理学报, 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [14] 张晓丹, 赵 颖, 朱 锋, 魏长春, 麦耀华, 高艳涛, 孙 建, 耿新华, 熊绍珍. 二次离子质谱深度剖面分析氢化微晶硅薄膜中的氧污染. 物理学报, 2005, 54(4): 1895-1898. doi: 10.7498/aps.54.1895
    [15] 张昊翔, 卢焕明, 叶志镇, 赵炳辉, 汪 雷, 阙端麟. Si基GaN外延层光致发光光谱与二次离子质谱的研究. 物理学报, 1999, 48(7): 1315-1319. doi: 10.7498/aps.48.1315
    [16] 翟华金, 倪国权, 周汝枋, 王育竹. 负离子铝团簇质谱的奇偶交变及其机理. 物理学报, 1997, 46(9): 1674-1680. doi: 10.7498/aps.46.1674
    [17] 刘淑荣, 江伟林, 刘家瑞, 林荫浓. 用飞行时间法研究Si溅射离子簇质谱的结构效应. 物理学报, 1991, 40(5): 703-708. doi: 10.7498/aps.40.703
    [18] 冯贤平, 徐至展, 江志明, 张正泉, 陈时胜, 范品忠, 田莉, 周智锦. 等离子体中高阶电离离子的空间分布. 物理学报, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [19] 盛谏. 高频离子源引出结构最佳尺寸的光学计算. 物理学报, 1963, 19(12): 782-790. doi: 10.7498/aps.19.782
    [20] 古月. 高频离子源的一些特性. 物理学报, 1960, 16(2): 107-110. doi: 10.7498/aps.16.107
计量
  • 文章访问数:  2925
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-02
  • 修回日期:  2021-10-28
  • 上网日期:  2022-02-17
  • 刊出日期:  2022-02-20

/

返回文章
返回