Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of reaction diffusion model in Turing pattern and numerical simulation

Zhang Rong-Pei Wang Zhen Wang Yu Han Zi-Jian

Citation:

Application of reaction diffusion model in Turing pattern and numerical simulation

Zhang Rong-Pei, Wang Zhen, Wang Yu, Han Zi-Jian
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Turing proposed a model for the development of patterns found in nature in 1952. Turing instability is known as diffusion-driven instability, which states that a stable spatially homogeneous equilibrium may lose its stability due to the unequal spatial diffusion coefficients. The Gierer-Mainhardt model is an activator and inhibitor system to model the generating mechanism of biological patterns. The reaction-diffusion system is often used to describe the pattern formation model arising in biology. In this paper, the mechanism of the pattern formation of the Gierer-Meinhardt model is deduced from the reactive diffusion model. It is explained that the steady equilibrium state of the nonlinear ordinary differential equation system will be unstable after adding of the diffusion term and produce the Turing pattern. The parameters of the Turing pattern are obtained by calculating the model. There are a variety of numerical methods including finite difference method and finite element method. Compared with the finite difference method and finite element method, which have low order precision, the spectral method can achieve the convergence of the exponential order with only a small number of nodes and the discretization of the suitable orthogonal polynomials. In the present work, an efficient high-precision numerical scheme is used in the numerical simulation of the reaction-diffusion equations. In spatial discretization, we construct Chebyshev differentiation matrices based on the Chebyshev points and use these matrices to differentiate the second derivative in the reaction-diffusion equation. After the spatial discretization, we obtain the nonlinear ordinary differential equations. Since the spectral differential matrix obtained by the spectral collocation method is full and cannot use the fast solution of algebraic linear equations, we choose the compact implicit integration factor method to solve the nonlinear ordinary differential equations. By introducing a compact representation for the spectral differential matrix, the compact implicit integration factor method uses matrix exponential operations sequentially in every spatial direction. As a result, exponential matrices which are calculated and stored have small sizes, as those in the one-dimensional problem. This method decouples the exact evaluation of the linear part from the implicit treatment of the nonlinear reaction terms. We only solve a local nonlinear system at each spatial grid point. This method combines with the advantages of the spectral method and the compact implicit integration factor method, i.e., high precision, good stability, and small storage and so on. Numerical simulations show that it can have a great influence on the generation of patterns that the system control parameters take different values under otherwise identical conditions. The numerical results verify the theoretical results.
      Corresponding author: Zhang Rong-Pei, rongpeizhang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61573008, 61703290), the Key Laboratory Fund of National Defense Science and Technology, China (Grant No. 6142A050202), and the Liaoning Provincial Department of Education Fund, China (Grant No. L201604).
    [1]

    Turing A M 1952 Philos. Trans. R. Soc. Lond. B 2 37

    [2]

    Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503 (in Chinese) [李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503]

    [3]

    Zhang L, Liu S Y 2007 Appl. Math. Mec. 28 1102 (in Chinese) [张丽, 刘三阳 2007 应用数学和力学 28 1102]

    [4]

    Li B, Wang M X 2008 Appl. Math. Mec. 29 749 (in Chinese) [李波, 王明新 2008 应用数学和力学 29 749]

    [5]

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 物理学报 63 238202]

    [6]

    Peng R Wang M 2007 Sci. China A 50 377

    [7]

    Copie F, Conforti M, Kudlinski A, Mussot A, Trillo S 2016 Phys. Rev. Lett. 116 143901

    [8]

    Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout G B, Epstein I R, Fraden S 2014 Proc. Natl. Acad. Sci. USA 111 4397

    [9]

    Lacitignola D, Bozzini B, Frittelli M, Sgura I 2017 Commun. Nonlinear Sci. Numer. Simul. 48 484

    [10]

    Gaskins D K, Pruc E E, Epstein I R, Dolnik M 2016 Phys. Rev. Lett. 117 056001

    [11]

    Zhang R P, Yu X J, Zhu J, Loula A 2014 Appl. Math. Model. 38 1612

    [12]

    Zhang R P, Zhu J, Loula A, Yu X J 2016 J. Comput. Appl. Math. 302 312

    [13]

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201 (in Chinese) [白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201]

    [14]

    Zhang R, Zhu J, Yu X, Li M, Loula A F D 2017 Appl. Math. Comput. 310 194

    [15]

    Lv Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

    [16]

    Wang H 2010 Comput. Phys. Commun. 181 325

    [17]

    Hoz F D L, Vadillo F 2013 Commun. Comput. Phys. 14 1001

    [18]

    Nie Q, Zhang Y T, Zhao R 2006 J. Comput. Phys. 214 521

    [19]

    Nie Q, Wan F Y M, Zhang Y T, Liu X F 2008 J. Comput. Phys. 227 5238

    [20]

    Gierer A, Meinhardt H 1972 Kybernetik 12 30

    [21]

    Ward M J, Wei J 2003 J. Nonlinear Sci. 13 209

    [22]

    Wei J, Winter M 2004 J. Math. Pures Appl. 83 433

    [23]

    Li H X 2015 J. Northeast Normal University 3 26 (in Chinese) [李海侠 2015 东北师大学报 3 26]

  • [1]

    Turing A M 1952 Philos. Trans. R. Soc. Lond. B 2 37

    [2]

    Li X Z, Bai Z G, Li Y, Zhao K, He Y F 2013 Acta Phys. Sin. 62 220503 (in Chinese) [李新政, 白占国, 李燕, 赵昆, 贺亚峰 2013 物理学报 62 220503]

    [3]

    Zhang L, Liu S Y 2007 Appl. Math. Mec. 28 1102 (in Chinese) [张丽, 刘三阳 2007 应用数学和力学 28 1102]

    [4]

    Li B, Wang M X 2008 Appl. Math. Mec. 29 749 (in Chinese) [李波, 王明新 2008 应用数学和力学 29 749]

    [5]

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202 (in Chinese) [胡文勇, 邵元智 2014 物理学报 63 238202]

    [6]

    Peng R Wang M 2007 Sci. China A 50 377

    [7]

    Copie F, Conforti M, Kudlinski A, Mussot A, Trillo S 2016 Phys. Rev. Lett. 116 143901

    [8]

    Tompkins N, Li N, Girabawe C, Heymann M, Ermentrout G B, Epstein I R, Fraden S 2014 Proc. Natl. Acad. Sci. USA 111 4397

    [9]

    Lacitignola D, Bozzini B, Frittelli M, Sgura I 2017 Commun. Nonlinear Sci. Numer. Simul. 48 484

    [10]

    Gaskins D K, Pruc E E, Epstein I R, Dolnik M 2016 Phys. Rev. Lett. 117 056001

    [11]

    Zhang R P, Yu X J, Zhu J, Loula A 2014 Appl. Math. Model. 38 1612

    [12]

    Zhang R P, Zhu J, Loula A, Yu X J 2016 J. Comput. Appl. Math. 302 312

    [13]

    Bai Z G, Dong L F, Li Y H, Fan W L 2011 Acta Phys. Sin. 60 118201 (in Chinese) [白占国, 董丽芳, 李永辉, 范伟丽 2011 物理学报 60 118201]

    [14]

    Zhang R, Zhu J, Yu X, Li M, Loula A F D 2017 Appl. Math. Comput. 310 194

    [15]

    Lv Z Q, Zhang L M, Wang Y S 2014 Chin. Phys. B 23 120203

    [16]

    Wang H 2010 Comput. Phys. Commun. 181 325

    [17]

    Hoz F D L, Vadillo F 2013 Commun. Comput. Phys. 14 1001

    [18]

    Nie Q, Zhang Y T, Zhao R 2006 J. Comput. Phys. 214 521

    [19]

    Nie Q, Wan F Y M, Zhang Y T, Liu X F 2008 J. Comput. Phys. 227 5238

    [20]

    Gierer A, Meinhardt H 1972 Kybernetik 12 30

    [21]

    Ward M J, Wei J 2003 J. Nonlinear Sci. 13 209

    [22]

    Wei J, Winter M 2004 J. Math. Pures Appl. 83 433

    [23]

    Li H X 2015 J. Northeast Normal University 3 26 (in Chinese) [李海侠 2015 东北师大学报 3 26]

  • [1] Lu Yuan-Shan, Xiao Min, Wan You-Hong, Ding Jie, Jiang Hai-Jun. Spatial pattern of a class of SI models driven by cross diffusion. Acta Physica Sinica, 2024, 73(8): 080201. doi: 10.7498/aps.73.20231877
    [2] Meng Xing-Rou, Liu Ruo-Qi, He Ya-Feng, Deng Teng-Kun, Liu Fu-Cheng. Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems. Acta Physica Sinica, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [3] Xie Yi-Zhan, Cheng Xi-Ming. A new method to solve electrolyte diffusion equations for single particle model of lithium-ion batteries. Acta Physica Sinica, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [4] Liu Ruo-Qi, Jia Meng-Meng, Fan Wei-Li, He Ya-Feng, Liu Fu-Cheng. Effects of anisotropic diffusion on Turing patterns in heterogeneous environment. Acta Physica Sinica, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [5] Liu Qian, Tian Miao, Fan Wei-Li, Jia Meng-Meng, Ma Feng-Na, Liu Fu-Cheng. Effects of spatial periodic forcing on Turing patterns in two-layer coupled reaction diffusion system. Acta Physica Sinica, 2022, 71(9): 098201. doi: 10.7498/aps.71.20212148
    [6] A New Method to Solve the Electrolyte Diffusion Equations of Single Particle Model for Lithium-ion Batteries. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211619
    [7] Liu Ya-Hui, Dong Meng-Fei, Liu Fu-Cheng, Tian Miao, Wang Shuo, Fan Wei-Li. Oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [8] Liu Fu-Cheng, Liu Ya-Hui, Zhou Zhi-Xiang, Guo Xue, Dong Meng-Fei. Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [9] Li Xin-Zheng, Bai Zhan-Guo, Li Yan. Numerical investigation on square Turing patterns in medium with two coupled layers. Acta Physica Sinica, 2019, 68(6): 068201. doi: 10.7498/aps.68.20182167
    [10] Hu Wen-Yong, Shao Yuan-Zhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity. Acta Physica Sinica, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [11] Wan Hui. Exact solutions to the nonlinear diffusion-convection equation with variable coefficients and source term. Acta Physica Sinica, 2013, 62(9): 090203. doi: 10.7498/aps.62.090203
    [12] Li Xin-Zheng, Bai Zhan-Guo, Li Yan, Zhao Kun, He Ya-Feng. Complex Turing patterns in two-layer non-linearly coupling reaction diffusion systems. Acta Physica Sinica, 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [13] Shi Lan-Fang, Ouyang Cheng, Chen Li-Hua, Mo Jia-Qi. Solving method of a class of reactive diffusion model for atmospheric plasmas. Acta Physica Sinica, 2012, 61(5): 050203. doi: 10.7498/aps.61.050203
    [14] Bai Zhao-Guo, Dong Li-Fang, Li Yong-Hui, Fan Wei-Li. Superlattice patterns in a coupled two-layer Lengel-Epstein model. Acta Physica Sinica, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [15] Zhan Jie-Min, Lin Dong, Li Yok-Sheng. Chebyshev generalized finite spectral method for linear and nonlinear waves. Acta Physica Sinica, 2007, 56(7): 3649-3654. doi: 10.7498/aps.56.3649
    [16] Wu Jun-Lin, Huang Xin-Min. Generalized master equation for the nonextensive reaction-diffusion systems. Acta Physica Sinica, 2006, 55(12): 6234-6237. doi: 10.7498/aps.55.6234
    [17] Wang Hong, Lou Ping, Zhuang Yong-He. Flow equations for solving elementary excitation energy spectrum of the t-J model. Acta Physica Sinica, 2004, 53(2): 577-581. doi: 10.7498/aps.53.577
    [18] LIU MU-REN, CHEN RUO-HANG, LI HUA-BING, KONG LING-JIANG. A LATTICE BOLTZMANN METHOD FOR TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION. Acta Physica Sinica, 1999, 48(10): 1800-1803. doi: 10.7498/aps.48.1800
    [19] GUAN SHAN, LU QI-SHAO, HUANG KE-LEI. ROTATING WAVES IN EXCITABLE MEDIA DESCRIBED-BY SIMPLIFIED HODGKIN-HUXLEY REACTION DIFFUSION EQUATION. Acta Physica Sinica, 1997, 46(5): 1028-1035. doi: 10.7498/aps.46.1028
    [20] CHEN LIANG-HENG. IRREVERSIBLE CHEMICAL REACTION-DIFFUSION EQUATION. Acta Physica Sinica, 1981, 30(7): 857-865. doi: 10.7498/aps.30.857
Metrics
  • Abstract views:  12171
  • PDF Downloads:  618
  • Cited By: 0
Publishing process
  • Received Date:  06 August 2017
  • Accepted Date:  06 November 2017
  • Published Online:  05 March 2018

/

返回文章
返回