Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems

Meng Xing-Rou Liu Ruo-Qi He Ya-Feng Deng Teng-Kun Liu Fu-Cheng

Citation:

Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems

Meng Xing-Rou, Liu Ruo-Qi, He Ya-Feng, Deng Teng-Kun, Liu Fu-Cheng
PDF
HTML
Get Citation
  • Cross-diffusion is one of the most important factors affecting the formation and transition of Turing patterns in reaction diffusion systems. In this paper, cross-diffusion is introduced into a reaction diffusion Brusselator model to investigate the effects of the directivity and density-dependence of cross-diffusion on Turing pattern transition. Turing space is obtained by the standard linear stability analysis, and the amplitude equations are derived based on weakly nonlinear method, by which Turing pattern selection can be determined theoretically. It is found that the degree of deviation from the primary Turing bifurcation point plays an important role in determining the process of pattern selection in the Turing region. As the deviation from onset is increased, the system exhibits a series of pattern transitions from homogenous state to honeycomb hexagonal pattern, to stripe pattern, and then to hexagonal spot pattern. In the case of one-way cross-diffusion, the direction of cross-diffusion determines the order of Turing pattern transition. The cross-diffusion from the inhibitor to the activator enhances the Turing mode and drives the system far away from the primary bifurcation point, resulting in the forward order of Turing pattern transition. On the contrary, the cross-diffusion from the activator to the inhibitor suppresses the Turing mode and forces the pattern transition in a reverse order. In the case of two-way cross-diffusion, the cross-diffusion effect from inhibitors to activators is stronger than that from activators to inhibitors with the same diffusion coefficient. Essentially, the cross-diffusion coefficient is dependent on not only the local concentration of species itself, but also the concentrations of other species due to their interaction. It is found that concentration dependent cross diffusion also affects the transformation direction of Turing pattern. When the diffusion coefficient $ {D_{uv}} $ is linearly dependent on the concentration of retarders, the positive transformation of the Turing pattern is induced with the increase of the concentration linear adjustment parameter $ \beta $. On the contrary, when the diffusion coefficient $ {D_{vu}} $ is linearly dependent on the concentration of active particles, the reverse transformation of the Turing pattern is induced. The numerical simulation results are consistent with the theoretical analysis.
      Corresponding author: He Ya-Feng, heyf@hbu.edu.cn ; Liu Fu-Cheng, hdlfc@hbu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275064, 11975089, 11875014), the Natural Science Foundation of Hebei Province, China (Grant No. A2021201003), and the Interdisciplinary Research Program of Natural Science of Hebei University, China (Grant No. DXK202010).
    [1]

    Gao S P, Chang L L, Perc M, Wang Z 2023 Phys. Rev. E 107 014216Google Scholar

    [2]

    Fuseya Y, Katsuno H, Behnia K, Kapitulnik A 2021 Nat. Phys. 17 1031Google Scholar

    [3]

    Halatek J, Frey E 2018 Nat. Phys. 14 507Google Scholar

    [4]

    Wang X L, Wang W D, Zhang G H 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 571Google Scholar

    [5]

    Turing A M 1952 Philos. Trans. R. Soc. London Ser. B 237 37Google Scholar

    [6]

    Ouyang Q, Swinney H L 1991 Nature 352 610Google Scholar

    [7]

    Callahan T K, Knobloch E 1999 Physica D 132 339Google Scholar

    [8]

    Haas P A, Goldstein R E 2021 Phys. Rev. Lett. 126 238101Google Scholar

    [9]

    Landge A N, Jordan B M, Diego X, Muller P 2020 Dev. Biol. 460 2Google Scholar

    [10]

    Kumar N, Horsthemke W 2011 Phys. Rev. E 83 036105Google Scholar

    [11]

    Yang R 2022 Nonlinear Dyn. 110 1753Google Scholar

    [12]

    Tang X S, Song Y L, Zhang T H 2016 Nonlinear Dyn. 86 73Google Scholar

    [13]

    Vanag V K, Epstein I R 2009 Int. J. Dev. Biol. 53 673Google Scholar

    [14]

    Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275Google Scholar

    [15]

    Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028Google Scholar

    [16]

    Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar

    [17]

    Souna F, Djilali S, Lakmeche A 2021 Eur. Phys. J. Plus 136 474Google Scholar

    [18]

    Guin L N 2015 Math. Comput. Simulat. 109 174Google Scholar

    [19]

    Gambino G, Lombardo M C, Sammartino M 2013 Nonlinear Anal. Real World Appl. 14 1755Google Scholar

    [20]

    Liu B, Wu R C, Chen L P 2018 Math. Biosci. 298 71Google Scholar

    [21]

    Ma T T, Meng X Z 2022 Math. Biosci. Eng. 19 6040Google Scholar

    [22]

    Xie Z F 2012 J. Math. Anal. Appl. 388 539Google Scholar

    [23]

    Chung J M, Peacock-López E 2007 Phys. Lett. A 371 41Google Scholar

    [24]

    Zhu L H, He L 2022 Nonlinear Dyn. 110 1935Google Scholar

    [25]

    Han R J, Dai B X 2019 Nonlinear Anal. Real World Appl. 45 822Google Scholar

    [26]

    Chen T R, Sun Z Y, Wu B Y 2017 Appl. Math. Model. 47 745Google Scholar

    [27]

    Li H L, Zhang L, Teng Z D, Jiang Y L 2015 J. Appl. Math. Comput. 53 223Google Scholar

    [28]

    Berenstein I, Beta C 2013 Chaos 23 033119Google Scholar

    [29]

    Wang P F, Zhao M, Yu H G, Dai C J, Wang N, Wang B B 2016 Discrete Dyn. Nat. Soc. 2016 4893451Google Scholar

    [30]

    Roussel C J, Roussel M R 2004 Prog. Biophys. Mol. Biol. 86 113Google Scholar

    [31]

    Ling Z, Zhang L, Lin Z G 2014 Appl. Math. Model. 38 5022Google Scholar

    [32]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 75001Google Scholar

    [33]

    Zemskov E P, Kassner K, Hauser M J B, Horsthemke W 2013 Phys. Rev. E 87 032906Google Scholar

    [34]

    Li W S, Hu W Y, Pang Y C, Liu T R, Zhong W R, Shao Y Z 2012 Phys. Rev. E 85 066132Google Scholar

    [35]

    胡文勇, 邵元智 2014 物理学报 63 238202Google Scholar

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202Google Scholar

    [36]

    Chen W Q, Zhang H, Ying H P, Li B W, Chen J X 2007 J. Chem. Phys. 127 154708Google Scholar

    [37]

    Picozzi A, Rica S 2008 EPL 84 34004Google Scholar

    [38]

    Roussel M R, Wang J C 2001 Phys. Rev. Lett. 87 188302Google Scholar

    [39]

    Gambino G, Lombardo M C, Sammartino M 2018 Phys. Rev. E 97 012220Google Scholar

    [40]

    Mukherjee N, Ghorai S, Banerjee M 2018 Ecol. Complex. 36 276Google Scholar

    [41]

    Liu C, Li L, Wang Z, Wang R W 2019 Appl. Math. Comput. 342 255Google Scholar

    [42]

    Peña B, Pérez-García C, Sanz-Anchelergues A, Miguez D G, Munuzuri A P 2003 Phys. Rev. E 68 056206Google Scholar

    [43]

    Yang R 2022 Chaos Solitons Fractals 164 112695Google Scholar

    [44]

    欧阳颀 2010 非线性科学与斑图动力学导论(北京: 北京大学出版社) 第144—160页

    Ouyang Q 2010 Nonlinear Science and the Pattern Dynamics Introduction (Beijing: Peking University Press) pp144–160

    [45]

    Verdasca J, de Wit A, Dewel G, Borckmans P 1992 Phys. Lett. A 168 194Google Scholar

    [46]

    Song D X, Li C, Song Y L 2020 Nonlinear Anal. Real World Appl. 54 103106Google Scholar

    [47]

    刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 物理学报 71 248201Google Scholar

    Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar

  • 图 1  $ a = 3 $, $ b = 9 $, $ {D_u} = 3 $, $ {D_v} = 10 $时, 交叉扩散存在下的图灵空间. 点线、粗实线、细实线和虚线分别对应(3a)式—(3d)式

    Figure 1.  Turing space in the present of cross diffusion for $ a = 3 $, $ b = 9 $, $ {D_u} = 3 $, and $ {D_v} = 10 $. Thick solid line, dotted line, thin solid line, and dotted line correspond to Eqs. (3a)-(3d), respectively.

    图 2  单向交叉扩散$ {D_{uv}} $引发的图灵斑图转变 (a)色散曲线; (b)条纹斑图, $ {D_{uv}} = 0 $; (c)点状六边形与条纹混合斑图, $ {D_{uv}} = 2 $; (d)点状六边形斑图, $ {D_{uv}} = 4.5 $

    Figure 2.  Turing pattern transition induced by one-way cross diffusion term $ {D_{uv}} $: (a) Dispersion curves; (b) stripe pattern, $ {D_{uv}} = 0 $; (c) mixed pattern with stripes and spots, $ {D_{uv}} = 2 $; (d) hexagonal spot pattern, $ {D_{uv}} = 4.5 $.

    图 3  单向交叉扩散$ {D_{vu}} $引发的图灵斑图转变 (a)色散曲线; (b)条纹斑图, $ {D_{vu}} = 0.5 $; (c)蜂窝状六边形斑图, $ {D_{vu}} = 1.5 $; (d)均匀态, $ {D_{vu}} = 3 $

    Figure 3.  Turing pattern transition induced by one-way cross diffusion term $ {D_{vu}} $: (a) Dispersion curves; (b) stripe pattern, $ {D_{vu}} = 0.5 $; (c) honeycomb hexagonal pattern, $ {D_{vu}} = 1.5 $; (d) uniform state, $ {D_{vu}} = 3 $.

    图 4  对称双向交叉扩散作用下图灵斑图的转变过程 (a)色散曲线; (b)条纹斑图, $ {D_{uv}} = {D_{vu}} = 1 $; (c)蜂窝状六边形与条状混合斑图, $ {D_{uv}} = {D_{vu}} = 3 $; (d)多模混合斑图, $ {D_{uv}} = {D_{vu}} = 5 $

    Figure 4.  Turing pattern transition induced by symmetrical two-way cross-diffusion: (a) Dispersion curves; (b) stripe pattern, $ {D_{uv}} = {D_{vu}} = 1 $; (c) mixed pattern with honeycomb hexagons and stripes, $ {D_{uv}} = {D_{vu}} = 3 $; (d) multimode mixed pattern, $ {D_{uv}} = {D_{vu}} = 5 $.

    图 5  非对称交叉扩散项下图灵斑图的转变过程, $ {D_{uv}} = 1 $ (a)色散曲线; (b)条纹斑图, $ {D_{vu}} = 0 $; (c)蜂窝状六边形斑图, $ {D_{vu}} = 2.5 $; (d)均匀态, $ {D_{vu}} = 5 $

    Figure 5.  Turing pattern transition induced by asymmetrical two-way cross-diffusion at $ {D_{uv}} = 1 $: (a) Dispersion curves; (b) stripe pattern, $ {D_{vu}} = 0 $; (c) honeycomb hexagonal pattern, $ {D_{vu}} = 2.5 $; (d) uniform state, $ {D_{vu}} = 5 $.

    图 6  浓度依赖交叉扩散$ {D_{uv}} = {D_0}(1 + \beta v) $引起图灵斑图的转变, $ {D_0} = 2 $, $ {D_{vu}} = 2 $ (a) 均匀态, $ \beta = - 0.6 $; (b) 蜂窝六边形斑图, $ \beta = - 0.4 $; (c) 蜂窝六边形与条纹混合斑图, $ \beta = - 0.2 $; (d) 条纹斑图, $ \beta = 0 $; (e) 条纹与点状混合斑图, $ \beta = 0.8 $; (f) 点状六边形斑图, $ \beta = 1.5 $

    Figure 6.  Turing pattern transition induced by cross-diffusion coefficient with concentration-dependence ($ {D_{uv}} = {D_0}(1 + \beta v) $), $ {D_0} = 2 $, $ {D_{vu}} = 2 $: (a) Uniform state, $ \beta = - 0.6 $; (b) honeycomb hexagonal pattern, $ \beta = - 0.4 $; (c) mixed pattern with honeycomb hexagons and stripes, $ \beta = - 0.2 $; (d) stripe pattern, $ \beta = 0 $; (e) mixed pattern with stripes and spots, $ \beta = 0.8 $; (f) hexagonal spot pattern, $ \beta = 1.5 $.

    图 7  浓度依赖交叉扩散$ {D_{vu}} = {D_0}(1 + \beta u) $引起图灵斑图的转变, $ {D_0} = 2 $, $ {D_{uv}} = 2 $ (a) 点状六边形斑图, $ \beta = - 0.30 $; (b) 条纹与点状六边形混合斑图, $ \beta = - 0.22 $; (c) 条纹斑图, $ \beta = 0 $; (d) 蜂窝状六边形与条纹混合斑图, $ \beta = 0.08 $; (e) 蜂窝状六边形斑图, $ \beta = 0.20 $; (f) 均匀态, $ \beta = 0.80 $

    Figure 7.  Turing pattern transition induced by cross-diffusion coefficient with concentration-dependence ($ {D_{vu}} = {D_0}(1 + \beta u) $), $ {D_0} = 2 $, $ {D_{uv}} = 2 $: (a) Hexagonal spot pattern, $ \beta = - 0.30 $; (b) mixed pattern with stripes and spots, $ \beta = - 0.22 $; (c) stripe pattern, $ \beta = 0 $; (d) mixed pattern with honeycomb hexagons and stripes, $ \beta = 0.08 $; (e) honeycomb hexagonal pattern, $ \beta = 0.20 $; (f) uniform state, $ \beta = 0.80 $.

  • [1]

    Gao S P, Chang L L, Perc M, Wang Z 2023 Phys. Rev. E 107 014216Google Scholar

    [2]

    Fuseya Y, Katsuno H, Behnia K, Kapitulnik A 2021 Nat. Phys. 17 1031Google Scholar

    [3]

    Halatek J, Frey E 2018 Nat. Phys. 14 507Google Scholar

    [4]

    Wang X L, Wang W D, Zhang G H 2017 Commun. Nonlinear Sci. Numer. Simulat. 42 571Google Scholar

    [5]

    Turing A M 1952 Philos. Trans. R. Soc. London Ser. B 237 37Google Scholar

    [6]

    Ouyang Q, Swinney H L 1991 Nature 352 610Google Scholar

    [7]

    Callahan T K, Knobloch E 1999 Physica D 132 339Google Scholar

    [8]

    Haas P A, Goldstein R E 2021 Phys. Rev. Lett. 126 238101Google Scholar

    [9]

    Landge A N, Jordan B M, Diego X, Muller P 2020 Dev. Biol. 460 2Google Scholar

    [10]

    Kumar N, Horsthemke W 2011 Phys. Rev. E 83 036105Google Scholar

    [11]

    Yang R 2022 Nonlinear Dyn. 110 1753Google Scholar

    [12]

    Tang X S, Song Y L, Zhang T H 2016 Nonlinear Dyn. 86 73Google Scholar

    [13]

    Vanag V K, Epstein I R 2009 Int. J. Dev. Biol. 53 673Google Scholar

    [14]

    Cui R F, Chen Q H, Chen J X 2020 Nanoscale 12 12275Google Scholar

    [15]

    Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028Google Scholar

    [16]

    Kerner E H 1957 Bull. Math. Biol. 19 121Google Scholar

    [17]

    Souna F, Djilali S, Lakmeche A 2021 Eur. Phys. J. Plus 136 474Google Scholar

    [18]

    Guin L N 2015 Math. Comput. Simulat. 109 174Google Scholar

    [19]

    Gambino G, Lombardo M C, Sammartino M 2013 Nonlinear Anal. Real World Appl. 14 1755Google Scholar

    [20]

    Liu B, Wu R C, Chen L P 2018 Math. Biosci. 298 71Google Scholar

    [21]

    Ma T T, Meng X Z 2022 Math. Biosci. Eng. 19 6040Google Scholar

    [22]

    Xie Z F 2012 J. Math. Anal. Appl. 388 539Google Scholar

    [23]

    Chung J M, Peacock-López E 2007 Phys. Lett. A 371 41Google Scholar

    [24]

    Zhu L H, He L 2022 Nonlinear Dyn. 110 1935Google Scholar

    [25]

    Han R J, Dai B X 2019 Nonlinear Anal. Real World Appl. 45 822Google Scholar

    [26]

    Chen T R, Sun Z Y, Wu B Y 2017 Appl. Math. Model. 47 745Google Scholar

    [27]

    Li H L, Zhang L, Teng Z D, Jiang Y L 2015 J. Appl. Math. Comput. 53 223Google Scholar

    [28]

    Berenstein I, Beta C 2013 Chaos 23 033119Google Scholar

    [29]

    Wang P F, Zhao M, Yu H G, Dai C J, Wang N, Wang B B 2016 Discrete Dyn. Nat. Soc. 2016 4893451Google Scholar

    [30]

    Roussel C J, Roussel M R 2004 Prog. Biophys. Mol. Biol. 86 113Google Scholar

    [31]

    Ling Z, Zhang L, Lin Z G 2014 Appl. Math. Model. 38 5022Google Scholar

    [32]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 75001Google Scholar

    [33]

    Zemskov E P, Kassner K, Hauser M J B, Horsthemke W 2013 Phys. Rev. E 87 032906Google Scholar

    [34]

    Li W S, Hu W Y, Pang Y C, Liu T R, Zhong W R, Shao Y Z 2012 Phys. Rev. E 85 066132Google Scholar

    [35]

    胡文勇, 邵元智 2014 物理学报 63 238202Google Scholar

    Hu W Y, Shao Y Z 2014 Acta Phys. Sin. 63 238202Google Scholar

    [36]

    Chen W Q, Zhang H, Ying H P, Li B W, Chen J X 2007 J. Chem. Phys. 127 154708Google Scholar

    [37]

    Picozzi A, Rica S 2008 EPL 84 34004Google Scholar

    [38]

    Roussel M R, Wang J C 2001 Phys. Rev. Lett. 87 188302Google Scholar

    [39]

    Gambino G, Lombardo M C, Sammartino M 2018 Phys. Rev. E 97 012220Google Scholar

    [40]

    Mukherjee N, Ghorai S, Banerjee M 2018 Ecol. Complex. 36 276Google Scholar

    [41]

    Liu C, Li L, Wang Z, Wang R W 2019 Appl. Math. Comput. 342 255Google Scholar

    [42]

    Peña B, Pérez-García C, Sanz-Anchelergues A, Miguez D G, Munuzuri A P 2003 Phys. Rev. E 68 056206Google Scholar

    [43]

    Yang R 2022 Chaos Solitons Fractals 164 112695Google Scholar

    [44]

    欧阳颀 2010 非线性科学与斑图动力学导论(北京: 北京大学出版社) 第144—160页

    Ouyang Q 2010 Nonlinear Science and the Pattern Dynamics Introduction (Beijing: Peking University Press) pp144–160

    [45]

    Verdasca J, de Wit A, Dewel G, Borckmans P 1992 Phys. Lett. A 168 194Google Scholar

    [46]

    Song D X, Li C, Song Y L 2020 Nonlinear Anal. Real World Appl. 54 103106Google Scholar

    [47]

    刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成 2022 物理学报 71 248201Google Scholar

    Liu R Q, Jia M M, Fan W L, He Y F, Liu F C 2022 Acta Phys. Sin. 71 248201Google Scholar

  • [1] Liang Peng-Jun, Zhu Tian-Xiang, Xiao Yi-Xin, Wang Yi-Yang, Han Yong-Jian, Zhou Zong-Quan, Li Chuan-Feng. Concentration-dependent optical and spin inhomogeneous linewidth of europium-doped yttrium orthosilicate crystals. Acta Physica Sinica, 2024, 73(10): 100301. doi: 10.7498/aps.73.20240116
    [2] Lu Yuan-Shan, Xiao Min, Wan You-Hong, Ding Jie, Jiang Hai-Jun. Spatial pattern of a class of SI models driven by cross diffusion. Acta Physica Sinica, 2024, 73(8): 080201. doi: 10.7498/aps.73.20231877
    [3] Hong Xin, Wang Xiao-Qiang, Li Dong-Xue, Shang Yun-Jing. Core-cap heterodimer independent of polarization direction of excitation light. Acta Physica Sinica, 2022, 71(3): 037801. doi: 10.7498/aps.71.20211381
    [4] Liu Qian, Tian Miao, Fan Wei-Li, Jia Meng-Meng, Ma Feng-Na, Liu Fu-Cheng. Effects of spatial periodic forcing on Turing patterns in two-layer coupled reaction diffusion system. Acta Physica Sinica, 2022, 71(9): 098201. doi: 10.7498/aps.71.20212148
    [5] Liu Ruo-Qi, Jia Meng-Meng, Fan Wei-Li, He Ya-Feng, Liu Fu-Cheng. Effects of anisotropic diffusion on Turing patterns in heterogeneous environment. Acta Physica Sinica, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [6] Polarization free of plasmonic heterodimer based on capped nanostructure. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211381
    [7] Liu Ya-Hui, Dong Meng-Fei, Liu Fu-Cheng, Tian Miao, Wang Shuo, Fan Wei-Li. Oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [8] Liu Fu-Cheng, Liu Ya-Hui, Zhou Zhi-Xiang, Guo Xue, Dong Meng-Fei. Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [9] Li Xin-Zheng, Bai Zhan-Guo, Li Yan. Numerical investigation on square Turing patterns in medium with two coupled layers. Acta Physica Sinica, 2019, 68(6): 068201. doi: 10.7498/aps.68.20182167
    [10] Gao Dang-Li, Li Lan-Xing, Feng Xiao-Juan, Chong Bo, Xin Hong, Zhao Jin, Zhang Xiang-Yu. Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors. Acta Physica Sinica, 2018, 67(22): 223201. doi: 10.7498/aps.67.20181167
    [11] Zhang Rong-Pei, Wang Zhen, Wang Yu, Han Zi-Jian. Application of reaction diffusion model in Turing pattern and numerical simulation. Acta Physica Sinica, 2018, 67(5): 050503. doi: 10.7498/aps.67.20171791
    [12] Wu De-Hui, Liu Zhi-Tian, Wang Xiao-Hong, Su Ling-Xin. Mechanism analysis of influence of surface-breaking orientation on magnetic leakage field distribution. Acta Physica Sinica, 2017, 66(4): 048102. doi: 10.7498/aps.66.048102
    [13] Hu Wen-Yong, Shao Yuan-Zhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity. Acta Physica Sinica, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [14] Li Xin-Zheng, Bai Zhan-Guo, Li Yan, Zhao Kun, He Ya-Feng. Complex Turing patterns in two-layer non-linearly coupling reaction diffusion systems. Acta Physica Sinica, 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [15] Meng Qing-Yu, Zhang Qing, Li Ming, Liu Lin-Feng, Qu Xiu-Rong, Wan Wei-Long, Sun Jiang-Ting. Study of concentration dependence of luminescent properties for Eu3+ doped CaWO4 red phosphors. Acta Physica Sinica, 2012, 61(10): 107804. doi: 10.7498/aps.61.107804
    [16] Jiang Shuang-Feng, Kong Fan-Min, Li Kang, Gao Hui. Study of far-field directivity of optical dipole antenna. Acta Physica Sinica, 2011, 60(4): 045203. doi: 10.7498/aps.60.045203
    [17] Chen De-Yi, Wang Zhong-Long. Diffusion in a linear oscillator driven by colored noises with white cross-correlation. Acta Physica Sinica, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [18] Ji Xiao-Ling. Influence of atmospheric turbulence on the spreading and directionality of radial Gaussian array beams. Acta Physica Sinica, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [19] ZHANG XU, SHEN KE. THE TRANSVERSE PATTERN OF LASER OSCILLATION OUTPUT IN A RING CAVITY AND THE TRANSITION TO OPTICAL TURBULENCE. Acta Physica Sinica, 2001, 50(11): 2116-2120. doi: 10.7498/aps.50.2116
    [20] CACULATION OF CONCENTRATION-DEPENDENT DIFFUSION COEFFICIENT---THE APPROXIMATION METHOD. Acta Physica Sinica, 1989, 38(8): 1329-1333. doi: 10.7498/aps.38.1329
Metrics
  • Abstract views:  3664
  • PDF Downloads:  157
  • Cited By: 0
Publishing process
  • Received Date:  06 March 2023
  • Accepted Date:  07 August 2023
  • Available Online:  08 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回