Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors

Gao Dang-Li Li Lan-Xing Feng Xiao-Juan Chong Bo Xin Hong Zhao Jin Zhang Xiang-Yu

Citation:

Regulation of sensitivity of Yb concentration to power-dependent upconversion luminescence colors

Gao Dang-Li, Li Lan-Xing, Feng Xiao-Juan, Chong Bo, Xin Hong, Zhao Jin, Zhang Xiang-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Controlling the power density of exciting light is a widely applied technological approach to dynamically tuning emission spectra to yield desirable luminescence properties, which is essential for various applications in laser devices, cancer cell imaging, biomarker molecule detections, thermometers and optoelectronic devices. However, most of upconversion systems are insensitive to power regulation. In this study, a series of Yb/Ho doped NaYF4 microrods with different Yb concentrations was synthesized by using a sodium citrate-assisted hydrothermal method. The dependence of upconversion characteristics of NaYF4:Yb/Ho microrods on Yb concentration and excitation power density are investigated in detail by a laser confocal microscopy system. The emission spectra exhibit discrete upconversion emission characteristic peaks that can easily be assigned to 5F3→5I8 (at about 488 nm), 5F4, 5S2→5I8 (at about 543 nm), 3K7, 5G4→5I8 (at about 580 nm) and 5F5→5I8 (at about 648 nm) transitions of Ho, respectively. The upconversion spectra and synchronous luminescence imaging patterns show that the luminescence ratio of red to green is not only dependent on the Yb concentration, but also sensitive to the excitation power. With Yb concentration increasing from 5% to 60%, the sensitivity of the power-controlled red to green luminescence ratio largely increases from 0.1% to 13.0%, corresponding to a clear luminescent color modification from green to red. These results indicate that the power-tuned red-to-green-luminescence ratio can be used as a method of measuring and evaluating Yb doping concentration. We attribute the sensitivity tuned by Yb concentration to the differences in population approach and upconversion mechanism for the red and green luminescence. By recording the slope of luminescence intensity versus exciting power density in a double-logarithmic presentation, we detect a small slope for the green emission relative to that for the red emission, especially at a high Yb concentration. These results indicate that the red upconversion process may be a three-photon process. The exciting power induced color adjusting is therefore explained by preferential three-photon population of the red emission due to the high 5S2→5G4 excitation rate, which is verified by down-conversions of emission spectra. Our present study provides a theoretical basis for the spectral tailoring of rare-earth micro/nano materials and supplies a foundation for the applications in rare-earth materials.
      Corresponding author: Gao Dang-Li, gaodangli@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604253), the Natural Science Foundation of Shaanxi Province of China (Grant No. 2018JM1036), the Fundamental Research Fund for the Central Universities, China (Grant Nos. 310812171004, 310812161001), the China Postdoctoral Science Foundation (Grant No. 2015M570816), the Provincial Undergraduate Training Program for Innovation and Entrepreneurship, China (Grant No. 1229), and the Undergraduate Scientific Research Training Plan (SSRT) of Xi'an University of Architecture and Technology, China.
    [1]

    Auzel F 1966 CR Acad. Sci. Paris 263 819

    [2]

    Wang F, Banerjee D, Liu Y, Chen X, Liu X 2010 Analyst 135 1839

    [3]

    Ai X Z, Ho C J H, Aw J X, Attia A B E, Mu J, Wang Y, Wang X Y, Wang Y, Liu X G, Chen H B, Gao M Y, Chen X Y, Yeow E K L, Liu G, Olivo M, Xing B J 2016 Nat. Commun. 7 10432

    [4]

    Zheng S H, Chen W B, Tan D Z, Zhou J J, Guo Q B, Jiang W, Xu C, Liu X F, Qiu J R 2014 Nanoscale 6 5675

    [5]

    Wickberg A, Mueller J B, Mange Y J, Fischer J, Nann T, Wegener M 2015 Appl. Phys. Lett. 106 133103

    [6]

    Dey R, Rai V K 2014 Dalton Trans. 43 111

    [7]

    Azam M, Rai V K 2017 Solid State Sci. 66 7

    [8]

    Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Ågren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [9]

    Hong G, Antaris A L, Dai H 2017 Nat. Biomed. Engineer. 1 0010

    [10]

    Pepin P A, Diroll B T, Choi H J, Murray C B, Vohs J M 2017 J. Phys. Chem. C 121 11488

    [11]

    Erogbogbo F, Yong K T, Roy I, Hu R, Law W C, Zhao W, Prasad P N, Ding H, Wu F, Kumar R, Swihart M T 2010 ACS Nano 5 413

    [12]

    Yang Y, Mi C, Jiao F Y, Su X Y, Li X D, Liu L L, Zhang J, Yu F, Liu Y Z, Mai Y H 2014 J. Am. Ceram. Soc. 97 1769

    [13]

    Zhang Z Y, Suo H, Zhao X Q, Sun D, Fan L, Guo C F 2018 ACS Appl. Mater. Interfaces 10 14570

    [14]

    Suo H, Zhao X, Zhang Z, Shi R, Wu Y, Xiang J, Guo C 2018 Nanoscale 10 9245

    [15]

    Wang L, Li Y 2007 Chem. Mater. 19 727

    [16]

    Gao D L, Wang D, Zhang X Y, Feng X Y, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622

    [17]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 84203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 84203]

    [18]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288

    [19]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotech. 10 924

    [20]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [21]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [22]

    Shao W, Chen G, Kuzmin A, Kutscher H L, Pliss A, Ohulchanskyy T Y, Prasad P N 2016 J. Am. Chem. Soc. 138 16192

    [23]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [24]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [25]

    Yi G S, Chow G M 2005 J. Mater. Chem. 15 4460

    [26]

    Chen B, Liu Y, Xiao Y, Chen X, Li Y, Li M Y, Qiao X S, Fan X P, Wang F 2016 J. Phys. Chem. Lett. 7 4916

    [27]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [28]

    Gao D, Zhang X, Pang Q, Zhao J, Xiao G, Tian D 2018 J. Mater. Chem. C 6 8011

    [29]

    Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M 2011 Opt. Exp. 19 1749

    [30]

    Wang L, Lan M, Liu Z, Qin G, Wu C, Wang X, Qin W, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [31]

    Wang M Y, Tian Y, Zhao F Y, Li R F, You W W, Fang Z L, Chen X Y, Huang W, Ju Q 2017 J. Mater. Chem. C 5 1537

    [32]

    Zhang J H, Hao Z D, Li J, Zhang X, Luo Y S, Pan G H 2015 Light: Sci. Appl. 4 e239

    [33]

    Gamelin D R, Gudel H U 2001 Transition Metal and Rare Earth Compounds (Vol. 214) (Berlin, Heidelberg: Springer) p1

    [34]

    Luthi S R, Pollnau M, Gudel H U, Hehlen M P 1999 Phys. Rev. B 60 162

    [35]

    Pollnau M, Gamelin D R, Luthi S R, Gudel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [36]

    Yang Y M, Jiao F Y, Su H X, Li Z Q, Liu Y F, Li Z Q, Yang Z P 2012 Spectrosc. Spect. Anal. 32 2637 (in Chinese) [杨艳民, 焦福运, 苏红新, 李自强, 刘云峰, 李志强, 杨志平 2012 光谱学与光谱分析 32 2637]

  • [1]

    Auzel F 1966 CR Acad. Sci. Paris 263 819

    [2]

    Wang F, Banerjee D, Liu Y, Chen X, Liu X 2010 Analyst 135 1839

    [3]

    Ai X Z, Ho C J H, Aw J X, Attia A B E, Mu J, Wang Y, Wang X Y, Wang Y, Liu X G, Chen H B, Gao M Y, Chen X Y, Yeow E K L, Liu G, Olivo M, Xing B J 2016 Nat. Commun. 7 10432

    [4]

    Zheng S H, Chen W B, Tan D Z, Zhou J J, Guo Q B, Jiang W, Xu C, Liu X F, Qiu J R 2014 Nanoscale 6 5675

    [5]

    Wickberg A, Mueller J B, Mange Y J, Fischer J, Nann T, Wegener M 2015 Appl. Phys. Lett. 106 133103

    [6]

    Dey R, Rai V K 2014 Dalton Trans. 43 111

    [7]

    Azam M, Rai V K 2017 Solid State Sci. 66 7

    [8]

    Chen G Y, Shen J, Ohulchanskyy T Y, Patel N J, Kutikov A, Li Z P, Song J, Pandey R K, Ågren H, Prasad P N, Han G 2012 ACS Nano 6 8280

    [9]

    Hong G, Antaris A L, Dai H 2017 Nat. Biomed. Engineer. 1 0010

    [10]

    Pepin P A, Diroll B T, Choi H J, Murray C B, Vohs J M 2017 J. Phys. Chem. C 121 11488

    [11]

    Erogbogbo F, Yong K T, Roy I, Hu R, Law W C, Zhao W, Prasad P N, Ding H, Wu F, Kumar R, Swihart M T 2010 ACS Nano 5 413

    [12]

    Yang Y, Mi C, Jiao F Y, Su X Y, Li X D, Liu L L, Zhang J, Yu F, Liu Y Z, Mai Y H 2014 J. Am. Ceram. Soc. 97 1769

    [13]

    Zhang Z Y, Suo H, Zhao X Q, Sun D, Fan L, Guo C F 2018 ACS Appl. Mater. Interfaces 10 14570

    [14]

    Suo H, Zhao X, Zhang Z, Shi R, Wu Y, Xiang J, Guo C 2018 Nanoscale 10 9245

    [15]

    Wang L, Li Y 2007 Chem. Mater. 19 727

    [16]

    Gao D L, Wang D, Zhang X Y, Feng X Y, Xin H, Yun S N, Tian D P 2018 J. Mater. Chem. C 6 622

    [17]

    Zhang X Y, Wang D, Shi H W, Wang J G, Hou Z Y, Zhang L D, Gao D L 2018 Acta Phys. Sin. 67 84203 (in Chinese) [张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽 2018 物理学报 67 84203]

    [18]

    Gao D L, Zhang X Y, Chong B, Xiao G Q, Tian D P 2017 Phys. Chem. Chem. Phys. 19 4288

    [19]

    Zhou B, Shi B, Jin D, Liu X 2015 Nat. Nanotech. 10 924

    [20]

    Gao D L, Zhang X Y, Zheng H R, Shi P, Li L, Ling Y W 2013 Dalton Trans. 42 1834

    [21]

    Gao D L, Zhang X Y, Zheng H R, Gao W, He E J 2013 J. Alloys Compd. 554 395

    [22]

    Shao W, Chen G, Kuzmin A, Kutscher H L, Pliss A, Ohulchanskyy T Y, Prasad P N 2016 J. Am. Chem. Soc. 138 16192

    [23]

    Gao D L, Zhang X Y, Gao W 2013 ACS Appl. Mater. Interfaces 5 9732

    [24]

    Gao D L, Tian D P, Zhang X Y, Gao W 2016 Sci. Rep. 6 22433

    [25]

    Yi G S, Chow G M 2005 J. Mater. Chem. 15 4460

    [26]

    Chen B, Liu Y, Xiao Y, Chen X, Li Y, Li M Y, Qiao X S, Fan X P, Wang F 2016 J. Phys. Chem. Lett. 7 4916

    [27]

    Gao W, Wang R, Han Q, Dong J, Yan L, Zheng H 2015 J. Phys. Chem. C 119 2349

    [28]

    Gao D, Zhang X, Pang Q, Zhao J, Xiao G, Tian D 2018 J. Mater. Chem. C 6 8011

    [29]

    Deng K, Gong T, Hu L, Wei X, Chen Y, Yin M 2011 Opt. Exp. 19 1749

    [30]

    Wang L, Lan M, Liu Z, Qin G, Wu C, Wang X, Qin W, Huang W, Huang L 2013 J. Mater. Chem. C 1 2485

    [31]

    Wang M Y, Tian Y, Zhao F Y, Li R F, You W W, Fang Z L, Chen X Y, Huang W, Ju Q 2017 J. Mater. Chem. C 5 1537

    [32]

    Zhang J H, Hao Z D, Li J, Zhang X, Luo Y S, Pan G H 2015 Light: Sci. Appl. 4 e239

    [33]

    Gamelin D R, Gudel H U 2001 Transition Metal and Rare Earth Compounds (Vol. 214) (Berlin, Heidelberg: Springer) p1

    [34]

    Luthi S R, Pollnau M, Gudel H U, Hehlen M P 1999 Phys. Rev. B 60 162

    [35]

    Pollnau M, Gamelin D R, Luthi S R, Gudel H U, Hehlen M P 2000 Phys. Rev. B 61 3337

    [36]

    Yang Y M, Jiao F Y, Su H X, Li Z Q, Liu Y F, Li Z Q, Yang Z P 2012 Spectrosc. Spect. Anal. 32 2637 (in Chinese) [杨艳民, 焦福运, 苏红新, 李自强, 刘云峰, 李志强, 杨志平 2012 光谱学与光谱分析 32 2637]

  • [1] Jia Chao-Yang, Gao Dang-Li, Yu Jia, Hu Yuan-Yuan, Chai Rui-Peng, Pang Qing, Zhang Xiang-Yu. Multicolor and multimode luminescence regulation and anti-counterfeiting application of lanthanide ions doped Li0.9K0.1NbO3 phosphors. Acta Physica Sinica, 2023, 72(22): 224210. doi: 10.7498/aps.72.20230517
    [2] Bai Peng, Zhang Yue-Heng, Shen Wen-Zhong. Research progress of semiconductor up-conversion single photon detection technology. Acta Physica Sinica, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [3] Sun Jia-Shi, Li Shu-Wei, Shi Lin-Lin, Zhou Tian-Min, Li Xiang-Ping, Zhang Jin-Su, Cheng Li-Hong, Chen Bao-Jiu. Experimental optimal design of the Er3+/Yb3+ codoped BaGd2ZnO5 phosphor and its upconversion luminescence properties. Acta Physica Sinica, 2015, 64(24): 243301. doi: 10.7498/aps.64.243301
    [4] Pan Cheng-Long, Liu Hong-Li, Guo Yun, Jing Shu, Sun Jing, Zhou He-Feng, Wang Hua. Synthesis and upconversion luminescent properties of BaMgF4:Er3+, Yb3+ nanocrystals. Acta Physica Sinica, 2014, 63(15): 154211. doi: 10.7498/aps.63.154211
    [5] Zhai Zi-Hui, Sun Jia-Shi, Zhang Jin-Su, Li Xiang-Ping, Cheng Li-Hong, Zhong Hai-Yang, Li Jing-Jing, Chen Bao-Jiu. Up-conversion luminescence in Tm3+/Yb3+ Co-doped NaY(MoO4)2 phosphors by optimal design of experiments. Acta Physica Sinica, 2013, 62(20): 203301. doi: 10.7498/aps.62.203301
    [6] Guo Lin-Na, Wang Yu-Hua. Upconversion luminescence properties of Y2SiO5: Er3+ ,Yb3+ ,Tm3+ synthesized by co-precipitation method. Acta Physica Sinica, 2011, 60(2): 027803. doi: 10.7498/aps.60.027803
    [7] Liu Li-Sha, Lü Shu-Chen, Sun Jiang-Ting. Spectroscopic properties and up-conversion luminescence Er3+/Yb3+ co-doped TeO2-WO3-Bi2O3 glass. Acta Physica Sinica, 2010, 59(9): 6637-6641. doi: 10.7498/aps.59.6637
    [8] Zhang Dan, Wang Zhao-Ming, Wang Yan-Shuang, Bo Shu-Hui, Zhen Zhen, Zhang Da-Ming. Fabrication of LaF3: Er, Yb nanoparticle doped organic-inorganic hydrid material waveguide amplifier and its properties. Acta Physica Sinica, 2009, 58(3): 1675-1678. doi: 10.7498/aps.58.1675
    [9] Dong Li-Qiang, Huang Shi-Hua, Jia Xiao-Xia, Chen Bao-Jiu. Studies on the dynamic process of up-conversion green emission from Er3+ under square wave excitation. Acta Physica Sinica, 2009, 58(3): 2061-2066. doi: 10.7498/aps.58.2061
    [10] Dong Li-Qiang, Huang Shi-Hua, Wen Hong-Yu, Yang Yan-Min, Wang Da-Wei, Duan Xiao-Xia. Excitation processes of up-conversion green emission for Er3+ and Yb3+ codoped tellurite glass. Acta Physica Sinica, 2009, 58(12): 8617-8622. doi: 10.7498/aps.58.8617
    [11] Li Cheng-Ren, Ming Cheng-Guo, Li Shu-Feng, Ding Jian-Hua, Wang Bao-Cheng, Zhang Li. Up-conversion mechanisms of Yb-Er co-doped Al2O3 film and its temperature characteristics. Acta Physica Sinica, 2008, 57(10): 6604-6608. doi: 10.7498/aps.57.6604
    [12] Jin Xin, Zhang Xiao-Dan, Lei Zhi-Fang, Xiong Shao-Zhen, Song Feng, Zhao Ying. Synthesis and properties of nanocrystal up-converting materials for thin film solar cells. Acta Physica Sinica, 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [13] Luo Jian-Qiao, Sun Dun-Lu, Zhang Qing-Li, Liu Wen-Peng, Gu Chang-Jiang, Wu Lu-Sheng, Yin Shao-Tang. Up-conversion luminescence in Er3+/Yb3+-codoped Gd3Sc2Ga3O12 laser crystals. Acta Physica Sinica, 2008, 57(12): 7712-7716. doi: 10.7498/aps.57.7712
    [14] Han Lin, Song Feng, Zou Chang-Guang, Su Jing, Yan Li-Hua, Tian Jian-Guo, Zhang Guang-Yin. Investigation of concentration quenching effect in Tm3+-doped NaY(WO4)2 crystal. Acta Physica Sinica, 2007, 56(7): 4187-4193. doi: 10.7498/aps.56.4187
    [15] Dai Shi-Xun, Li Xu-Jie, Nie Qiu-Hua, Xu Tie-Feng, Shen Xiang, Wang Xun-Si. Upconversion luminescence in Yb3+ sensitized Er3+/Yb3+-codoped tellurite glasses. Acta Physica Sinica, 2007, 56(9): 5518-5525. doi: 10.7498/aps.56.5518
    [16] Ding Qing-Lei, Xiao Si-Guo, Zhang Xiang-Hua, Xia Yan-Qin, Liu Zheng-Wei. The upconversion luminescent of Er3+/Yb3+ co-doped ZrO2-Al2O3 powders. Acta Physica Sinica, 2006, 55(10): 5140-5144. doi: 10.7498/aps.55.5140
    [17] Chen Xiao-Bo, Cai Qing, Wang Ce. The excited state upconversion of Pr(0.5):ZBLAN under two-color excitation*. Acta Physica Sinica, 2004, 53(12): 4382-4386. doi: 10.7498/aps.53.4382
    [18] Tan Hao, Song Feng, Su Jing, Shang Mei-Ru, Fu Bo, Zhang Guang-Yin, Cheng Zhen-Xiang, Chen Huan-Chu. Upconversion luminescence and Spectra characteristics of Er3+, Tm3+ co-doped NaY(WO4)2 crystal. Acta Physica Sinica, 2004, 53(2): 631-635. doi: 10.7498/aps.53.631
    [19] Wu Chang-Feng, Qin Wei-Ping, Qin Guan-Shi, Huang Shi-Hua, Zhang Ji-Sen, Zhao Dan, Lü Shao-Zhe, Lin Hai-Yan, Liu Huang-Qing. Photon avalanche upconversion in TiO2∶Mo. Acta Physica Sinica, 2003, 52(6): 1540-1544. doi: 10.7498/aps.52.1540
    [20] FENG YAN, SONG FENG, ZHAO LI-JUAN, ZHANG CHAO-BO, GUO HONG-CANG, ZHANG GUANG-YIN. UPCONVERSION IN Nd:YVO4 CRYSTAL UNDER LD PUMP AND ITS INFLUENCE. Acta Physica Sinica, 2001, 50(2): 335-340. doi: 10.7498/aps.50.335
Metrics
  • Abstract views:  6729
  • PDF Downloads:  102
  • Cited By: 0
Publishing process
  • Received Date:  13 June 2018
  • Accepted Date:  14 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回