-
In order to obtain the Er3+/Yb3+ co-doped BaGd2ZnO5 up-conversion phosphor which has the maximum green and red emission intensity, firstly, the method of homogeneous design rooted in the experimental optimal design is employed to search optimum Er3+/Yb3+doping concentration preliminarily. Next, the quadratic general rotary unitized design is adopted to further optimize the experiment, and the regression equation in green and red emission intensity is established as a function of the doping concentration of Er3+/Yb3+. Finally, the optimal solution, that is, the doping concentration of Er3+/Yb3+ corresponding to the maximum emission intensity, is calculated by genetic algorithm. The optimal Er3+/Yb3+co-doped BaGd2ZnO5 phosphor is synthesized by the conventional high temperature solid state method. The crystal structure of as-prepared products is characterized by X-ray diffraction (XRD), and the results show that all the Er3+/Yb3+co-doped BaGd2ZnO5 phosphors we synthesized are of pure phase. The steady-state up-conversion (UC) emission spectra of products are measured under the excitation of a continuous 980 nm laser diode at different working currents. From the UC luminescent spectra of Er3+/Yb3+co-doped BaGd2ZnO5 phosphor, we can see a red emission centered at 662 nm, two green emissions centered at 551 nm and 527 nm, which are assigned to 4F9/2→4I15/2, 4S3/2→4I15/2 and 2H11/2→$4I15/2 transitions of Er3+ ion, respectively. The dependences of green and red UC emission intensities of optimal samples on working current are investigated, indicating that the red emission and green emission of optimal samples both originate from two-photon process. From the normalized green UC emission spectra, it can be concluded that the experimental laser working current induced temperature variation of samples can be omitted. According to Boltzmann distribution law and the thermal equilibrium existing between the levels of 2H11/2 and 4S3/2, the relationship between green emission and temperature in the optimal green UC emission sample is discussed in depth, and the energy level gap between 2H11/2 level and 4S3/2 level is calculated to be 926.11 cm-1. Through the study of the temperature effect on the optimal green UC emission sample, we find that the emission intensity decreases with the increasing of the temperature, owing to the thermal quenching effect. Furthermore, we calculate the activation energies of the samples, the activation energies of the green emission, red emission, and the overall emission are deduced to be 0.45, 0.46, and 0.45 eV, respectively.
-
Keywords:
- experimental optimal design /
- up-conversion /
- BaGd2ZnO5 /
- 2-photon
[1] Hua J T, Chen B J, Sun J S, Cheng L H, Zhong H Y 2010 Chin. J. Opt. Appl. Opt. 3 301 (in Chinese) [花景田, 陈宝玖, 孙佳石, 程丽红, 仲海洋 2010 中国光学与应用光学 3 301]
[2] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
[3] Boyer J C, van Veggel F C J M 2010 Nanoscale 2 1417
[4] Yin Z, Zhu Y S, Xu W, Wang J, Xu S, Dong B, Xu L, Zhang S, Song H W 2013 Chem. Commun. 49 3781
[5] Hao S W, Chen G Y, Yang C H 2013 Theranostics 3 331
[6] Li C R, Li S F, Dong B, Cheng Y Q, Yin H T, Yang J, Chen Y 2011 Chin. Phys. B 20 017803
[7] Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q, Zhou D L 2014 Chin. Phys. B 23 024205
[8] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1797
[9] Shanmugam V, Selvakumar S, Yey C S 2014 Chem. Soc. Rev. 43 6254
[10] Wang Y, Qin W P, Di W H, Zhang J S, Cao C Y 2008 Chin. Phys. B 17 3300
[11] Chen X B, Lu J, Zhang Y Z, Xu X L, Feng B H, Wang C, Gregory J S, Yang G J 2010 Chin. Phys. B 19 097804
[12] Wang Q G, Su L B, Li H J, Zheng L H, Xu X D, Tang H L, Jiang D P, Wu F, Xu J 2012 Chin. Phys. B 21 026101
[13] Xu W, Li C R, Cao B S, Dong B 2010 Chin. Phys. B 19 127804
[14] Dacosta M V, Doughan S, Han Y, Krull U J 2014 Anal. Chim. Acta 832 1
[15] Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210
[16] Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp174-180 (in Chinese) [任露泉 2009 试验设计及其优化(北京: 科学出版社) 第174–180 页]
[17] He W, Xue W D, Tang B 2012 The Method of Optimal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp191-194 (in Chinese) [何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析(北京: 化学工业出版社) 第191–194 页]
[18] Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys. Sin 62 203301 (in Chinese) [翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301]
[19] Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933 (in Chinese) [程仕平, 徐慧, 王德志, 王光君, 吴壮志2007 稀有金属材料与工程 36 1933]
[20] Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862
[21] Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845
[22] Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002 (in Chinese) [石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014光子学报 43 1116002]
[23] Mi R Y, Xia Z G, Liu H K 2013 Acta Phys. Sin. 62 137802 (in Chinese) [米瑞宇, 夏志国, 刘海坤2013 物理学报 62 137802]
[24] Guo R, Shi P F, Cheng X Q, Li J 2007 Chin. J. Inorg. Chem. 23 1387 (in Chinese) [郭瑞, 史鹏飞, 程新群, 李娟 2007 无机化学学报 23 1387]
[25] Li P L, Xu Z, Zhao S L, Wang Y S, Zhang F J 2012 Chin. Phys. B 21 047803
[26] Yu T T 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [于婷婷 2011 硕士学位论文(大连: 大连海事大学)]
[27] Zheng H, Xiang S Y, Chen B J 2014 Chin. J. Lumin. 35 800 (in Chinese) [郑辉, 相苏原, 陈宝玖 2014 发光学报 35 800]
[28] Zheng H, Chen B J, Yu H Q, Zhang J S, Sun J S, Li X P, Sun M, Tian B N, Zhong H, Fu S B, Hua R N, Xia H P 2014 RSC Adv. 4 47556
[29] Xiang S Y, Chen B J, Zhang J S, Li X P, Sun J S, Zheng H, Wu Z L, Zhong H, Yu H Q, Xia H P 2014 Opt. Mater. Exp. 4 1966
[30] Li S Y, Niklasson G A, Granqvist C G2014 J. Appl. Phys. 115 053513
[31] Wei Y L, Li X M, Guo H 2014 Opt. Mater. Exp. 4 1367
[32] Luo X J, Yuminami R, Sakurai T, Akimoto K 2013 J. Rare Earths 31 267
[33] Sun H Q, Zhang Q W, Wang X S, Gu M 2014 Ceram. Inter. 40 2581
[34] Wang Q, Zhang W H, Ouyang S Y, Yang B, Zhang Y P, Xia H P 2015 Acta Photo. Sin. 44 0116004 (in Chinese) [王倩, 张为欢, 欧阳绍业, 杨斌, 张约品, 夏海平 2015 光子学报 44 0116004]
[35] Zhou T M, Zhang Y Q, Wu Z L, Chen B J 2015 J. Rare Earths. 33 686
[36] Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 Cryst. Eng. Com. 14 1760
-
[1] Hua J T, Chen B J, Sun J S, Cheng L H, Zhong H Y 2010 Chin. J. Opt. Appl. Opt. 3 301 (in Chinese) [花景田, 陈宝玖, 孙佳石, 程丽红, 仲海洋 2010 中国光学与应用光学 3 301]
[2] Li X M, Zhang F, Zhao D Y 2013 Nano Today 8 643
[3] Boyer J C, van Veggel F C J M 2010 Nanoscale 2 1417
[4] Yin Z, Zhu Y S, Xu W, Wang J, Xu S, Dong B, Xu L, Zhang S, Song H W 2013 Chem. Commun. 49 3781
[5] Hao S W, Chen G Y, Yang C H 2013 Theranostics 3 331
[6] Li C R, Li S F, Dong B, Cheng Y Q, Yin H T, Yang J, Chen Y 2011 Chin. Phys. B 20 017803
[7] Hu Y B, Qiu J B, Zhou D C, Song Z G, Yang Z W, Wang R F, Jiao Q, Zhou D L 2014 Chin. Phys. B 23 024205
[8] Wang F, Banerjee D, Liu Y S, Chen X Y, Liu X G 2010 Analyst 135 1797
[9] Shanmugam V, Selvakumar S, Yey C S 2014 Chem. Soc. Rev. 43 6254
[10] Wang Y, Qin W P, Di W H, Zhang J S, Cao C Y 2008 Chin. Phys. B 17 3300
[11] Chen X B, Lu J, Zhang Y Z, Xu X L, Feng B H, Wang C, Gregory J S, Yang G J 2010 Chin. Phys. B 19 097804
[12] Wang Q G, Su L B, Li H J, Zheng L H, Xu X D, Tang H L, Jiang D P, Wu F, Xu J 2012 Chin. Phys. B 21 026101
[13] Xu W, Li C R, Cao B S, Dong B 2010 Chin. Phys. B 19 127804
[14] Dacosta M V, Doughan S, Han Y, Krull U J 2014 Anal. Chim. Acta 832 1
[15] Li H Y, Noh H M, Moon B K, Choi B C, Jeong J H, Jang K, Lee H S, Yi S S 2013 Inorg. Chem. 52 11210
[16] Ren L Q 2009 Design of Experiment and Optimization (Beijing: Science Press) pp174-180 (in Chinese) [任露泉 2009 试验设计及其优化(北京: 科学出版社) 第174–180 页]
[17] He W, Xue W D, Tang B 2012 The Method of Optimal Design of Experiment and Data Analysis (Beijing: Chemical Industry Press) pp191-194 (in Chinese) [何为, 薛卫东, 唐斌 2012 优化试验设计方法及数据分析(北京: 化学工业出版社) 第191–194 页]
[18] Zhai Z H, Sun J S, Zhang J S, Li X P, Cheng L H, Zhong H Y, Li J J, Chen B J 2013 Acta Phys. Sin 62 203301 (in Chinese) [翟梓会, 孙佳石, 张金苏, 李香萍, 程丽红, 仲海洋, 李晶晶, 陈宝玖 2013 物理学报 62 203301]
[19] Cheng S P, Xu H, Wang D Z, Wang G J, Wu Z Z 2007 Rare Metal. Mat. Eng. 36 1933 (in Chinese) [程仕平, 徐慧, 王德志, 王光君, 吴壮志2007 稀有金属材料与工程 36 1933]
[20] Xiong W W, Yin C L, Zhang Y, Zhang J L 2009 Chin. J. Mech. Eng-En. 22 862
[21] Tan G Z, Zhou D M, Jiang B J, Dioubate M I 2008 J. Cent. South Univ. Technol. 15 845
[22] Shi L L, Sun J S, Zhai Z H, Li X P, Zhang J S, Chen B J 2014 Acta Photo. Sin. 43 1116002 (in Chinese) [石琳琳, 孙佳石, 翟梓会, 李香萍, 张金苏, 陈宝玖 2014光子学报 43 1116002]
[23] Mi R Y, Xia Z G, Liu H K 2013 Acta Phys. Sin. 62 137802 (in Chinese) [米瑞宇, 夏志国, 刘海坤2013 物理学报 62 137802]
[24] Guo R, Shi P F, Cheng X Q, Li J 2007 Chin. J. Inorg. Chem. 23 1387 (in Chinese) [郭瑞, 史鹏飞, 程新群, 李娟 2007 无机化学学报 23 1387]
[25] Li P L, Xu Z, Zhao S L, Wang Y S, Zhang F J 2012 Chin. Phys. B 21 047803
[26] Yu T T 2011 M. S. Dissertation (Dalian: Dalian Maritime University) (in Chinese) [于婷婷 2011 硕士学位论文(大连: 大连海事大学)]
[27] Zheng H, Xiang S Y, Chen B J 2014 Chin. J. Lumin. 35 800 (in Chinese) [郑辉, 相苏原, 陈宝玖 2014 发光学报 35 800]
[28] Zheng H, Chen B J, Yu H Q, Zhang J S, Sun J S, Li X P, Sun M, Tian B N, Zhong H, Fu S B, Hua R N, Xia H P 2014 RSC Adv. 4 47556
[29] Xiang S Y, Chen B J, Zhang J S, Li X P, Sun J S, Zheng H, Wu Z L, Zhong H, Yu H Q, Xia H P 2014 Opt. Mater. Exp. 4 1966
[30] Li S Y, Niklasson G A, Granqvist C G2014 J. Appl. Phys. 115 053513
[31] Wei Y L, Li X M, Guo H 2014 Opt. Mater. Exp. 4 1367
[32] Luo X J, Yuminami R, Sakurai T, Akimoto K 2013 J. Rare Earths 31 267
[33] Sun H Q, Zhang Q W, Wang X S, Gu M 2014 Ceram. Inter. 40 2581
[34] Wang Q, Zhang W H, Ouyang S Y, Yang B, Zhang Y P, Xia H P 2015 Acta Photo. Sin. 44 0116004 (in Chinese) [王倩, 张为欢, 欧阳绍业, 杨斌, 张约品, 夏海平 2015 光子学报 44 0116004]
[35] Zhou T M, Zhang Y Q, Wu Z L, Chen B J 2015 J. Rare Earths. 33 686
[36] Tian Y, Chen B J, Hua R N, Yu N S, Liu B Q, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Tian B N, Zhong H 2012 Cryst. Eng. Com. 14 1760
Catalog
Metrics
- Abstract views: 6194
- PDF Downloads: 140
- Cited By: 0