Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of spatial periodic forcing on Turing patterns in two-layer coupled reaction diffusion system

Liu Qian Tian Miao Fan Wei-Li Jia Meng-Meng Ma Feng-Na Liu Fu-Cheng

Citation:

Effects of spatial periodic forcing on Turing patterns in two-layer coupled reaction diffusion system

Liu Qian, Tian Miao, Fan Wei-Li, Jia Meng-Meng, Ma Feng-Na, Liu Fu-Cheng
PDF
HTML
Get Citation
  • Periodic forcing of pattern-forming systems is always a research hot spot in the field of pattern formation since it is one of the most effective methods of controlling patterns. In reality, most of the pattern-forming systems are the multilayered systems, in which each layer is a reaction-diffusion system coupled to adjacent layers. However, few researches on this issue have been conducted in the multilayered systems and their responses to the periodic forcing have not yet been well understood. In this work, the influences of the spatial periodic forcing on the Turing patterns in two linearly coupled layers described by the Brusselator (Bru) model and the Lengyel-Epstein (LE) model respectively have been investigated by introducing a spatial periodic forcing into the LE layer. It is found that the subcritical Turing mode in the LE layer can be excited as long as one of the external spatial forcing and the supercritical Turing mode (referred to as internal forcing mode) of the Bru layer is a longer wave mode. These three modes interact together and give rise to complex patterns with three different spatial scales. If both the spatial forcing mode and the internal forcing mode are the short wave modes, the subcritical Turing mode in the LE layer cannot be excited. But the superlattice pattern can also be generated when the spatial resonance is satisfied. When the eigenmode of the LE layer is supercritical, a simple and robust hexagon pattern with its characteristic wavelength appears and responds to the spatial forcing only when the forcing intensity is large enough. It is found that the wave number of forcing has a powerful influence on the spatial symmetry of patterns.
      Corresponding author: Fan Wei-Li, fanweili@hbu.edu.cn ; Liu Fu-Cheng, hdlfc@hbu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975089, 11875014) and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2021201010, A2021201003).
    [1]

    Yochelis A, Gilad E, Nishiura Y, Silber M, Uecker H 2021 Physica D 415 132769Google Scholar

    [2]

    Sam E M, Hayase Y, Auernhammer G, Vollmer D 2011 Phys. Chem. Chem. Phys. 13 13333Google Scholar

    [3]

    Perinet N, Juric D, Tuckerman L S 2012 Phys. Rev. Lett. 109 164501Google Scholar

    [4]

    Alarcón H, Muñoz M H, Perinet N, Mujica N, Gutierrez P, Gordillo L 2020 Phys. Rev. Lett. 125 254505Google Scholar

    [5]

    Foster J E, Kovach Y E, Lai J, Garcia M C 2020 Plasma Sources Sci. T. 29 034004Google Scholar

    [6]

    Brauns F, Weyer H, Halatek J, Yoon J, Frey E 2021 Phys. Rev. Lett. 126 104101Google Scholar

    [7]

    Turing A M 1952 Phil. Trans. R. Soc. B 237 37Google Scholar

    [8]

    Fuseya Y, Katsuno H, Behnia K, Kapitulnik A 2021 Nat. Phys. 17 1031Google Scholar

    [9]

    Haas P A, Goldstein R E 2021 Phys. Rev. Lett. 126 238101Google Scholar

    [10]

    Mau Y, Hagberg A, Meron E 2012 Phys. Rev. Lett. 109 034102Google Scholar

    [11]

    Mau Y, Haim L, Hagberg A, Meron E 2013 Phys. Rev. E. 88 032917Google Scholar

    [12]

    Manor R, Hagberg A, Meron E 2009 New J. Phys. 11 063016Google Scholar

    [13]

    Dolnik M, Berenstein I, Zhabotinsky A M, Epstein I R 2001 Phys. Rev. Lett. 87 238301Google Scholar

    [14]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2003 Phys. Rev. Lett. 91 058302Google Scholar

    [15]

    Dolnik M, Jr. Bánsági T, Ansari S, Valent I, Epstein I. R 2011 Phys. Chem. Chem. Phys. 13 12578Google Scholar

    [16]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2005 J. Phys. Chem. A 109 5382Google Scholar

    [17]

    Nagao R, Epstein I R, Dolnik. M 2013 J. Phys. Chem. A 117 9120Google Scholar

    [18]

    Haim L, Hagberg A, Meron E 2015 Chaos 25 064307Google Scholar

    [19]

    Liu S, Yao C G, Wang X F, Zhao Q 2017 Physica A 467 184Google Scholar

    [20]

    Berenstein I, Munuzuri A P, Yang L F, Dolnik M, Zhabotinsk A M, Epstein I R 2008 Phys. Rev. E 78 025101Google Scholar

    [21]

    Barrio R A, Varea C, Aragón J L, Maini P K 1999 Bull. Math. Biol. 61 483Google Scholar

    [22]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [23]

    Paul S, Pal K, Ray D S 2020 Phys. Rev. E 102 052209Google Scholar

    [24]

    李伟恒, 潘飞, 黎维新, 唐国宁 2015 物理学报 64 198201Google Scholar

    Li W H, Pan F, Li W X, Tang G N 2015 Acta Phys. Sin. 64 198201Google Scholar

    [25]

    Feng F, Yan J, Liu F C, He Y F 2016 Chin. Phys. B 25 104702Google Scholar

    [26]

    刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲 2020 物理学报 69 028201Google Scholar

    Liu F C, Liu Y H, Zhou Z X, Guo X, Dong M F 2020 Acta Phys. Sin. 69 028201Google Scholar

    [27]

    Miguez D G, Dolnik M, Epstein I R, Munuzuri A P 2011 Phys. Rev. E. 84 046210Google Scholar

    [28]

    白婧, 关富荣, 唐国宁 2021 物理学报 70 170502Google Scholar

    Bai J, Guan F R, Tang G N 2021 Acta Phys. Sin. 70 170502Google Scholar

    [29]

    李倩昀, 白婧, 唐国宁 2021 物理学报 70 098202Google Scholar

    Li Q Y, Bai J, Tang G N 2021 Acta Phys. Sin. 70 098202Google Scholar

    [30]

    张秀芳, 马军, 徐莹, 任国栋 2021 物理学报 70 090502Google Scholar

    Zhang X F, Ma J, Xu Y, Ren G D 2021 Acta Phys. Sin. 70 090502Google Scholar

    [31]

    Wang Q, Ning W J, Dai D, Zhang Y H 2019 Plasma Process. Polym. 17 1900182Google Scholar

    [32]

    Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005Google Scholar

    [33]

    Fan W L, Hou X H, Tian M, Gao K Y, He Y F, Yang Y X, Liu Q, Yao J F, Liu F C, Yuan C X 2022 Plasma Sci. Technol. 24 015402Google Scholar

    [34]

    Fan W L, Sheng Z M, Dang W, Liang Y Q, Gao K Y, Dong L F 2019 Phys. Rev. Appl. 11 064057Google Scholar

    [35]

    刘雅慧, 董梦菲, 刘富成, 田淼, 王硕, 范伟丽 2021 物理学报 70 158201Google Scholar

    Liu Y H, Dong M F, Liu F C, Tian M, Wang S, Fan W L 2021 Acta Phys. Sin. 70 158201Google Scholar

    [36]

    Fan W L, Liu C Y, Gao K Y, Liang Y Q, Liu F C 2021 Phys. Lett. A 396 127223Google Scholar

    [37]

    白占国, 刘富成, 董丽芳 2015 物理学报 64 210505Google Scholar

    Bai Z G, Liu F C, Dong L F 2015 Acta Phys. Sin. 64 210505Google Scholar

    [38]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303Google Scholar

  • 图 1  不同图灵模类型的双层耦合系统的色散关系图 (a) 类型I ($ {D_{{u_1}}} = 50 $, $ {D_{{v_1}}} = 127 $, $ {D_{{u_2}}} = 6.6 $, $ {D_{{v_2}}} = 81 $, $ \alpha = 0.1 $); (b) 类型II ($ {D_{{u_1}}} = 12.5 $, $ {D_{{v_1}}} = 32 $, $ {D_{{u_2}}} = 26.5 $, $ {D_{{v_2}}} = 320 $, $ \alpha = 0.1 $); (c) 类型III ($ {D_{{u_1}}} = 50 $, $ {D_{{v_1}}} = 127 $, $ {D_{{u_2}}} = 5.5 $, $ {D_{{v_2}}} = 98 $, $ \alpha = 0.1 $)

    Figure 1.  Dispersion curves of two-layer coupled systems with different Turing mode types: (a) Type I ($ {D_{{u_1}}} = 50 $, $ {D_{{v_1}}} = 127 $, $ {D_{{u_2}}} = 6.6 $, $ {D_{{v_2}}} = 81 $, $ \alpha = 0.1 $); (b) type II ($ {D_{{u_1}}} = 12.5 $, $ {D_{{v_1}}} = 32 $, $ {D_{{u_2}}} = 26.5 $, $ {D_{{v_2}}} = 320 $, $ \alpha = 0.1 $); (c) type III ($ {D_{{u_1}}} = 50 $, $ {D_{{v_1}}} = 127 $, $ {D_{{u_2}}} = 5.5 $, $ {D_{{v_2}}} = 98 $, $ \alpha = 0.1 $).

    图 2  类型I下不同驱动强度的图灵斑图及其傅里叶频谱图 (a) 超六边形斑图, $ {w_0} = 0 $; (b) 雪花斑图I, $ {w_0} = 0.1 $; (c) 菱形网格斑图I, $ {w_0} = 0.5 $; (d) 菱形网格斑图II, $ {w_0} = 1.0 $(超临界图灵模$ {k_1}=0.2 $, 次临界本征模$ {k_{\rm{C}}}=0.4 $, 驱动的波数$ {k_{\rm{F}}}=0.1 $; $N =256$, $ \Delta x = \Delta y = 1 $)

    Figure 2.  Patterns and Fourier spectrum with different forcing intensity in type I: (a) Super-hexagon pattern, $ {w_0} = 0 $; (b) snowflake pattern I, $ {w_0} = 0.1 $; (c) rhombus mash pattern I, $ {w_0} = 0.5 $; (d) rhombus mash pattern II, $ {w_0} = 1.0 $ (Supercritical Turing mode $ {k_1}=0.2 $, subcritical eigenmode $ {k_{\rm{C}}}=0.4 $, wavenumber of forcing $ {k_{\rm{F}}}=0.1 $; $N = 256$, $ \Delta x = \Delta y = 1 $)

    图 3  类型I下不同驱动波数的斑图及其傅里叶频谱图 (a) 超六边形斑图, $ {k_{\rm{F}}}=0.2 $; (b) 简单六边形蜂窝斑图, $ {k_{\rm{F}}}=0.4 $; (c) 六边形网格斑图I, $ {k_{\rm{F}}}=0.6 $; (d) 六边形网格斑图II, $ {k_{\rm{F}}}=0.8 $ (超临界图灵模$ {k_1}=0.2 $, 次临界本征模$ {k_{\rm{C}}}=0.4 $, 驱动的强度恒为$ {w_0} = 0.1 $, $N = 256$, $ \Delta x = \Delta y = 1 $)

    Figure 3.  Patterns and Fourier spectrum with different forcing wavenumber in type I: (a) Super-hexagon pattern, $ {k_{\rm{F}}}=0.2 $; (b) simple hexagonal honeycomb pattern, $ {k_{\rm{F}}}=0.4 $; (c) hexagonal mash pattern I, $ {k_{\rm{F}}}=0.6 $; (d) hexagonal mash pattern II, $ {k_{\rm{F}}}=0.8 $ (Supercritical Turing mode $ {k_1}=0.2 $, subcritical eigenmode $ {k_{\rm{C}}}=0.4 $, forcing intensity $ {w_0} = 0.1 $, $N = 256$, $ \Delta x = \Delta y = 1 $)

    图 4  波数反转后不同驱动强度下的斑图及其傅里叶频谱图 (a) 色散关系图($ {k_1}:{k_{\text{C}}} = 1:4 $, $ {D_{{u_1}}} = 195 $, $ {D_{{v_1}}} = 510 $, $ {D_{{u_2}}} = 6.6 $, $ {D_{{v_2}}} = 81 $, $ \alpha = 0.1 $); (b) 简单六边形蜂窝斑图, $ {w_0} = 0 $; (c) 雪花斑图II, $ {w_0} = 0.1 $; (d) 简单六边形蜂窝斑图, $ {w_0} = 0.6 $; (e) 六边形白眼斑图, $ {w_0} = 1.0 $(驱动的波数$ {k_{\rm{F}}} = 0.2 $; $N = 256$, $ \Delta x = \Delta y = 1 $)

    Figure 4.  Patterns and Fourier spectrum of different forcing intensity after wavenumber inversion: (a) Dispersion curve (${k_1}:{k_{\text{C}}} = $$ 1:4$, $ {D_{{u_1}}} = 195 $, $ {D_{{v_1}}} = 510 $, $ {D_{{u_2}}} = 6.6 $, $ {D_{{v_2}}} = 81 $, $ \alpha = 0.1 $); (b) simple hexagonal honeycomb pattern, $ {w_0} = 0 $; (c) snowflake pattern II, $ {w_0} = 0.1 $; (d) simple hexagonal honeycomb pattern, $ {w_0} = 0.6 $; (e) hexagonal white-eye pattern, $ {w_0} = 1.0 $ (Wavenumber of forcing $ {k_{\rm{F}}} = 0.2 $, $N = 256$, $ \Delta x = \Delta y = 1 $)

    图 5  类型II下不同短波驱动强度的斑图及其傅里叶频谱图 (a) 简单六边形蜂窝斑图, $ {w_0} = 0 $; (b) 简单六边形蜂窝斑图, $ {w_0} = 0.1 $; (c) 六边形花瓣斑图I, $ {w_0} = 0.5 $; (d) 六边形花瓣斑图II, $ {w_0} = 1.0 $(超临界图灵模$ {k_1}=0.4 $, 次临界本征模$ {k_{\rm{C}}}=0.2 $, 驱动的波数$ {k_{\rm{F}}}=0.8 $, $N = 128$, $ \Delta x = \Delta y = 0.5 $)

    Figure 5.  Patterns and Fourier spectrum of different short-wave forcing intensity in type II: (a) Simple hexagonal honeycomb pattern, $ {w_0} = 0 $; (b) simple hexagonal honeycomb pattern, $ {w_0} = 0.1 $; (c) hexagonal petal pattern pattern I, $ {w_0} = 0.5 $; (d) hexagonal petal pattern pattern II; $ {w_0} = 1.0 $ (Supercritical Turing mode $ {k_1}=0.4 $, subcritical eigenmode $ {k_{\rm{C}}}=0.2 $, wavenumber of forcing $ {k_{\rm{F}}}=0.8 $, $N = 128$, $ \Delta x = \Delta y = 0.5 $)

    图 6  类型II下不同长波驱动强度的斑图及其傅里叶频谱图 (a) 简单六边形蜂窝斑图, $ {w_0} = 0 $; (b) 简单六边形蜂窝斑图, $ {w_0} = 0.1 $; (c) 六边形蜂窝斑图, $ {w_0} = 0.6 $; (d) 黑眼六边形蜂窝斑图, $ {w_0} = 1.0 $ (超临界图灵模$ {k_1}=0.4 $, 次临界本征模$ {k_{\rm{C}}}=0.2 $, 驱动的波数$ {k_{\rm{F}}}=0.1 $, $N = 256$, $ \Delta x = \Delta y = 1 $)

    Figure 6.  Patterns and Fourier spectrum of different long-wave forcing intensity in type II: (a) Simple hexagonal honeycomb pattern, $ {w_0} = 0 $; (b) simple hexagonal honeycomb pattern, $ {w_0} = 0.1 $; (c) hexagonal honeycomb pattern, $ {w_0} = 0.6 $; (d) black-eye hexagonal honeycomb pattern, $ {w_0} = 1.0 $ (Supercritical Turing mode $ {k_1}=0.4 $, subcritical eigenmode $ {k_{\rm{C}}}=0.2 $, wavenumber of forcing $ {k_{\rm{F}}}=0.1 $, $N = 256$, $ \Delta x = \Delta y = 1 $)

    图 7  类型III下不同驱动强度的斑图及其傅里叶频谱图 (a) 简单六边形蜂窝斑图, $ {w_0} = 0 $; (b) 简单六边形蜂窝斑图, $ {w_0} = 0.1 $; (c) 调制蜂窝斑图, $ {w_0} = 0.5 $; (d) 条纹与蜂窝六边形共存斑图, $ {w_0} = 1.0 $ (超临界图灵模$ {k_1}=0.2 $, 超临界图灵模${k_{\rm C}} = 0.4$, 驱动的波数${k_{\rm F}} = 0.1$; $N = 128$, $ \Delta x = \Delta y = 1 $)

    Figure 7.  Patterns and Fourier spectrum with different forcing intensity in type III: (a) Simple hexagonal honeycomb pattern, $ {w_0} = 0 $; (b) simple hexagonal honeycomb pattern, $ {w_0} = 0.1 $; (c) modulated honeycomb pattern, $ {w_0} = 0.5 $; (d) coexistence of stripe and honeycomb hexagon, $ {w_0} = 1.0 $ (Supercritical Turing mode $ {k_1}=0.2 $, supercritical Turing mode ${k_{\rm C}} = 0.4$, wavenumber of forcing ${k_{\rm F}} = 0.1$, $N = 128$, $ \Delta x = \Delta y = 1 $)

    图 8  类型III下不同驱动波数的斑图及其傅里叶频谱图 (a) 复杂斑图, $ {k_{\rm{F}}}=0.2 $; (b) 简单六边形蜂窝斑图, $ {k_{\rm{F}}}=0.4 $; (c) 简单六边形蜂窝斑图, $ {k_{\rm{F}}}=0.6 $; (d) 条纹斑图, $ {k_{\rm{F}}}=0.8 $(超临界图灵模$ {k_1}=0.2 $, 超临界图灵模${k_{\rm C}} = 0.4$, 驱动的强度固定为$ {w_0} = 1.0 $, $N = 128$, $ \Delta x = \Delta y = 1 $)

    Figure 8.  Patterns and Fourier spectrum with different forcing wavenumber in type III: (a) Complex pattern, $ {k_{\rm{F}}}=0.2 $; (b) simple hexagonal honeycomb pattern, $ {k_{\rm{F}}}=0.4 $; (c) simple hexagonal honeycomb pattern, $ {k_{\rm{F}}}=0.6 $; (d) stripe pattern, $ {k_{\rm{F}}}=0.8 $ (Supercritical Turing mode$ {k_1}=0.2 $, supercritical Turing mode ${k_{\rm C}} = 0.4$, forcing intensity $ {w_0} = 1.0 $, $N = 128$, $ \Delta x = \Delta y = 1 $)

  • [1]

    Yochelis A, Gilad E, Nishiura Y, Silber M, Uecker H 2021 Physica D 415 132769Google Scholar

    [2]

    Sam E M, Hayase Y, Auernhammer G, Vollmer D 2011 Phys. Chem. Chem. Phys. 13 13333Google Scholar

    [3]

    Perinet N, Juric D, Tuckerman L S 2012 Phys. Rev. Lett. 109 164501Google Scholar

    [4]

    Alarcón H, Muñoz M H, Perinet N, Mujica N, Gutierrez P, Gordillo L 2020 Phys. Rev. Lett. 125 254505Google Scholar

    [5]

    Foster J E, Kovach Y E, Lai J, Garcia M C 2020 Plasma Sources Sci. T. 29 034004Google Scholar

    [6]

    Brauns F, Weyer H, Halatek J, Yoon J, Frey E 2021 Phys. Rev. Lett. 126 104101Google Scholar

    [7]

    Turing A M 1952 Phil. Trans. R. Soc. B 237 37Google Scholar

    [8]

    Fuseya Y, Katsuno H, Behnia K, Kapitulnik A 2021 Nat. Phys. 17 1031Google Scholar

    [9]

    Haas P A, Goldstein R E 2021 Phys. Rev. Lett. 126 238101Google Scholar

    [10]

    Mau Y, Hagberg A, Meron E 2012 Phys. Rev. Lett. 109 034102Google Scholar

    [11]

    Mau Y, Haim L, Hagberg A, Meron E 2013 Phys. Rev. E. 88 032917Google Scholar

    [12]

    Manor R, Hagberg A, Meron E 2009 New J. Phys. 11 063016Google Scholar

    [13]

    Dolnik M, Berenstein I, Zhabotinsky A M, Epstein I R 2001 Phys. Rev. Lett. 87 238301Google Scholar

    [14]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2003 Phys. Rev. Lett. 91 058302Google Scholar

    [15]

    Dolnik M, Jr. Bánsági T, Ansari S, Valent I, Epstein I. R 2011 Phys. Chem. Chem. Phys. 13 12578Google Scholar

    [16]

    Berenstein I, Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2005 J. Phys. Chem. A 109 5382Google Scholar

    [17]

    Nagao R, Epstein I R, Dolnik. M 2013 J. Phys. Chem. A 117 9120Google Scholar

    [18]

    Haim L, Hagberg A, Meron E 2015 Chaos 25 064307Google Scholar

    [19]

    Liu S, Yao C G, Wang X F, Zhao Q 2017 Physica A 467 184Google Scholar

    [20]

    Berenstein I, Munuzuri A P, Yang L F, Dolnik M, Zhabotinsk A M, Epstein I R 2008 Phys. Rev. E 78 025101Google Scholar

    [21]

    Barrio R A, Varea C, Aragón J L, Maini P K 1999 Bull. Math. Biol. 61 483Google Scholar

    [22]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [23]

    Paul S, Pal K, Ray D S 2020 Phys. Rev. E 102 052209Google Scholar

    [24]

    李伟恒, 潘飞, 黎维新, 唐国宁 2015 物理学报 64 198201Google Scholar

    Li W H, Pan F, Li W X, Tang G N 2015 Acta Phys. Sin. 64 198201Google Scholar

    [25]

    Feng F, Yan J, Liu F C, He Y F 2016 Chin. Phys. B 25 104702Google Scholar

    [26]

    刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲 2020 物理学报 69 028201Google Scholar

    Liu F C, Liu Y H, Zhou Z X, Guo X, Dong M F 2020 Acta Phys. Sin. 69 028201Google Scholar

    [27]

    Miguez D G, Dolnik M, Epstein I R, Munuzuri A P 2011 Phys. Rev. E. 84 046210Google Scholar

    [28]

    白婧, 关富荣, 唐国宁 2021 物理学报 70 170502Google Scholar

    Bai J, Guan F R, Tang G N 2021 Acta Phys. Sin. 70 170502Google Scholar

    [29]

    李倩昀, 白婧, 唐国宁 2021 物理学报 70 098202Google Scholar

    Li Q Y, Bai J, Tang G N 2021 Acta Phys. Sin. 70 098202Google Scholar

    [30]

    张秀芳, 马军, 徐莹, 任国栋 2021 物理学报 70 090502Google Scholar

    Zhang X F, Ma J, Xu Y, Ren G D 2021 Acta Phys. Sin. 70 090502Google Scholar

    [31]

    Wang Q, Ning W J, Dai D, Zhang Y H 2019 Plasma Process. Polym. 17 1900182Google Scholar

    [32]

    Sinclair J, Walhout M 2012 Phys. Rev. Lett. 108 035005Google Scholar

    [33]

    Fan W L, Hou X H, Tian M, Gao K Y, He Y F, Yang Y X, Liu Q, Yao J F, Liu F C, Yuan C X 2022 Plasma Sci. Technol. 24 015402Google Scholar

    [34]

    Fan W L, Sheng Z M, Dang W, Liang Y Q, Gao K Y, Dong L F 2019 Phys. Rev. Appl. 11 064057Google Scholar

    [35]

    刘雅慧, 董梦菲, 刘富成, 田淼, 王硕, 范伟丽 2021 物理学报 70 158201Google Scholar

    Liu Y H, Dong M F, Liu F C, Tian M, Wang S, Fan W L 2021 Acta Phys. Sin. 70 158201Google Scholar

    [36]

    Fan W L, Liu C Y, Gao K Y, Liang Y Q, Liu F C 2021 Phys. Lett. A 396 127223Google Scholar

    [37]

    白占国, 刘富成, 董丽芳 2015 物理学报 64 210505Google Scholar

    Bai Z G, Liu F C, Dong L F 2015 Acta Phys. Sin. 64 210505Google Scholar

    [38]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2002 Phys. Rev. Lett. 88 208303Google Scholar

  • [1] Lu Yuan-Shan, Xiao Min, Wan You-Hong, Ding Jie, Jiang Hai-Jun. Spatial pattern of a class of SI models driven by cross diffusion. Acta Physica Sinica, 2024, 73(8): 080201. doi: 10.7498/aps.73.20231877
    [2] Meng Xing-Rou, Liu Ruo-Qi, He Ya-Feng, Deng Teng-Kun, Liu Fu-Cheng. Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems. Acta Physica Sinica, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [3] Liu Ruo-Qi, Jia Meng-Meng, Fan Wei-Li, He Ya-Feng, Liu Fu-Cheng. Effects of anisotropic diffusion on Turing patterns in heterogeneous environment. Acta Physica Sinica, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [4] Cao Chun-Lei, Xu Jin-Liang, Ye Wen-Li. Self-propulsion droplet induced via periodic explosive boiling. Acta Physica Sinica, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [5] Liu Ya-Hui, Dong Meng-Fei, Liu Fu-Cheng, Tian Miao, Wang Shuo, Fan Wei-Li. Oscillatory Turing patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [6] Liu Fu-Cheng, Liu Ya-Hui, Zhou Zhi-Xiang, Guo Xue, Dong Meng-Fei. Super-lattice patterns in two-layered coupled non-symmetric reaction diffusion systems. Acta Physica Sinica, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [7] Li Xin-Zheng, Bai Zhan-Guo, Li Yan. Numerical investigation on square Turing patterns in medium with two coupled layers. Acta Physica Sinica, 2019, 68(6): 068201. doi: 10.7498/aps.68.20182167
    [8] Zhang Rong-Pei, Wang Zhen, Wang Yu, Han Zi-Jian. Application of reaction diffusion model in Turing pattern and numerical simulation. Acta Physica Sinica, 2018, 67(5): 050503. doi: 10.7498/aps.67.20171791
    [9] Zhang Zhi-Gang, Liu Feng-Rui, Zhang Qing-Chuan, Cheng Teng, Wu Xiao-Ping. Trapping of multiple particles by space speckle field and infrared microscopy. Acta Physica Sinica, 2014, 63(2): 028701. doi: 10.7498/aps.63.028701
    [10] Hu Wen-Yong, Shao Yuan-Zhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity. Acta Physica Sinica, 2014, 63(23): 238202. doi: 10.7498/aps.63.238202
    [11] Li Xin-Zheng, Bai Zhan-Guo, Li Yan, Zhao Kun, He Ya-Feng. Complex Turing patterns in two-layer non-linearly coupling reaction diffusion systems. Acta Physica Sinica, 2013, 62(22): 220503. doi: 10.7498/aps.62.220503
    [12] He Ya-Feng, Feng Xiao-Min, Zhang Liang. Control of the spatiotemporal pattern with time delayed feedback in a gas discharge system. Acta Physica Sinica, 2012, 61(24): 245204. doi: 10.7498/aps.61.245204
    [13] Yang Jian-Hua, Liu Xian-Bin. Analysis of periodic vibrational resonance induced by linear time delay feedback. Acta Physica Sinica, 2012, 61(1): 010505. doi: 10.7498/aps.61.010505
    [14] Bai Zhao-Guo, Dong Li-Fang, Li Yong-Hui, Fan Wei-Li. Superlattice patterns in a coupled two-layer Lengel-Epstein model. Acta Physica Sinica, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [15] Yao Xi-Wei, Zeng Bi-Rong, Liu Qin, Mu Xiao-Yang, Lin Xing-Cheng, Yang Chun, Pan Jian, Chen Zhong. Subspace quantum process tomography via nuclear magnetic resonance. Acta Physica Sinica, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [16] YU XING-QI, WANG KAI-GE. STATIONARY AND ROTATIONAL TRANSVERSE PATTERNS IN CYLINDRICALLY SYMMETRIC LASERS. Acta Physica Sinica, 2000, 49(5): 898-903. doi: 10.7498/aps.49.898
    [17] LU QI-SHAO. SPATIALLY PERIODIC STRUCTURES OF A FOURTH ORDER REACTION-DIFFUSION SYSTEM WITH DIFFUSION INSTABILITY. Acta Physica Sinica, 1989, 38(12): 1901-1910. doi: 10.7498/aps.38.1901
    [18] XIA MENG-FEN, QIU YUN-QING. SPATIAL DIFFUSION DRIVEN BY ELECTROSTATIC WAVES. Acta Physica Sinica, 1985, 34(3): 322-331. doi: 10.7498/aps.34.322
    [19] HUO YU-PING. THE SPACE-TIME CORRELATION OF THE FLUCTUATION IN A CHEMICAL REACTION SYSTEM (I)——FLUCTUATION, DIFFUSION AND WARES. Acta Physica Sinica, 1982, 31(3): 355-368. doi: 10.7498/aps.31.355
    [20] WU XIAO-PING, HE SHI-PING, LI ZHI-CHAO. MOVEMENT OF SPACE SPECKLE. Acta Physica Sinica, 1980, 29(9): 1142-1150. doi: 10.7498/aps.29.1142
Metrics
  • Abstract views:  4521
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  22 November 2021
  • Accepted Date:  04 January 2022
  • Available Online:  26 January 2022
  • Published Online:  05 May 2022

/

返回文章
返回