Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Frequency control algorithm of domestic optically pumped small cesium clock based on optimal control theory

Song Hui-Jie Dong Shao-Wu Wang Xiang Jiang Meng Zhang Yu Guo Dong Zhang Ji-Hai

Citation:

Frequency control algorithm of domestic optically pumped small cesium clock based on optimal control theory

Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Jiang Meng, Zhang Yu, Guo Dong, Zhang Ji-Hai
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Frequency control of atomic clock is a key technology in time keeping operation. At present, the open-loop control algorithm is mainly used for the frequency control of foreign microwave clock, but the working principle and performance of domestic optically pumped small cesium clock (hereinafter referred to as domestic clock) are different from those of foreign atomic clock of the same type, so the algorithm cannot be well adapted to domestic clock. In order to improve the autonomy and security of the national standard time, based on the noise characteristics of domestic clock, in this work, the linear quadratic Gaussian control algorithm is studied in the framework of optimal control theory. This algorithm belongs to closed-loop control algorithm. The performance of domestic clock is studied from the aspects of synchronization time, frequency control accuracy and frequency control stability. Finally, the influence of different control intervals on the performance of domestic clock is analyzed. The results show that with the increase of the constraint matrix $ {{{W}}_{\text{R}}} $ in the quadratic loss function, the synchronization time increases, the control accuracy decreases, and the control short-term stability increases. When $ {{{W}}_{\text{R}}} $ is the same, with the increase of control interval, the synchronization time increases, the control accuracy decreases, and the control short-term stability increases. When $ {W_{\text{R}}} = 1 $, the synchronization time with control interval of 1 h is 5 h, the control accuracy is 1.83 ns, and the Allan deviation of 1 hour is 1.81×10–13. When the control interval is 8 h, the synchronization time is 28 h, the control accuracy is 4.48 ns, and the Allan deviation of 1 h is 1.48×10–13. The medium-term stability and long-term stability of domestic optically pumped small cesium clock are both improved.
      Corresponding author: Dong Shao-Wu, sdong@ntsc.ac.cn
    • Funds: Project supported by the Western Light Project of Chinese Academy of Sciences (Grant No. XAB2021YN22), the Open Fund of Beijing Institute of Radio Metrology and Testing (Grant No. JLJK2021001A002), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JQ-014).
    [1]

    Godel M, Schmidt T D, Furthner J 2019 Metrologia 56 3Google Scholar

    [2]

    Schmidt T D, Trainotti C, Furthner J 2019 Proceedings of the Precise Time and Time Interval Meeting ( ION PTTI 2019), Reston, Virginia, January 28–31, 2019 p290

    [3]

    Galleani L, Signorile G, Formichella V, Sesia I 2020 Metrologia 57 3Google Scholar

    [4]

    Arias E, Panfilo G, Petit G 2011 Metrologia 48 S145Google Scholar

    [5]

    McCarthy D 2011 Metrologia 48 S132Google Scholar

    [6]

    Koppang P A 2016 Metrologia 53 R60Google Scholar

    [7]

    陈法喜, 赵侃, 李立波, 郭宝龙 2022 物理学报 71 230702Google Scholar

    Chen F X, Zhao K, Li L B, Guo B L 2022 Acta Phys. Sin. 71 230702Google Scholar

    [8]

    Song H J, Dong S W, Wu W J, Jiang M, Wang W X 2018 Metrologia 55 350Google Scholar

    [9]

    韩孟纳, 童明雷 2023 物理学报 72 079701Google Scholar

    Han M N, Tong M L 2023 Acta Phys. Sin. 72 079701Google Scholar

    [10]

    Kaczmarek J, Miczulski W, Koziol M, Czubla A 2013 IEEE Trans. Instrum. Meas 65 2828Google Scholar

    [11]

    Panfilo G, Harmegnies A, Tisserand L 2012 Metrologia 49 49Google Scholar

    [12]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [13]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [14]

    宋会杰, 董绍武, 王翔, 章宇, 王燕平 2020 物理学报 69 170201Google Scholar

    Song H J, Dong S W, Wang X, Zhang Y, Wang Y P 2020 Acta Phys. Sin. 69 170201Google Scholar

    [15]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报(信息科学版) 44 1205Google Scholar

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205Google Scholar

    [16]

    Panfilo G, Arias E F 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140Google Scholar

    [17]

    Tavella P, Thomas C 1991 Metrologia 28 2Google Scholar

    [18]

    刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新 2023 物理学报 72 184202Google Scholar

    Liu Y, Wang W H, He D J, Zhou Y Z, Shen Y, Zou H X 2023 Acta Phys. Sin. 72 184202Google Scholar

    [19]

    梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富 2023 物理学报 72 013702Google Scholar

    Liang Y, Xie Y H, Chen P F, Shuai T, Pei Y X, Xu H T, Zhao Y, Xia T, Pan X Y, Zhang P J, Lin C F 2023 Acta Phys. Sin. 72 013702Google Scholar

    [20]

    邵晓东, 韩海年, 魏志义 2021 物理学报 70 134204Google Scholar

    Shao X D, Han H N, Wei Z Y 2021 Acta Phys. Sin. 70 134204Google Scholar

    [21]

    Galleani L 2008 Metrologia 45 S175Google Scholar

    [22]

    Tavella P 2008 Metrologia 45 S183Google Scholar

    [23]

    Yao J, Parker T E, Ashby N, Levine J 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 127Google Scholar

  • 图 1  铯原子钟与氢原子钟的Allan偏差曲线

    Figure 1.  Allan deviation curves of cesium atomic clock and hydrogen atomic clock.

    图 2  国产钟的控制结构图

    Figure 2.  Control structure diagram of domestic clock.

    图 3  不同$ {{{W}}_{\text{R}}} $值的控制同步时间比较

    Figure 3.  Comparison of control synchronization time with different $ {{{W}}_{\text{R}}} $ values.

    图 4  同步后不同$ {{{W}}_{\text{R}}} $值的控制测量值

    Figure 4.  Control measurements of different $ {{{W}}_{\text{R}}} $ values after synchronization

    图 5  约束矩阵$ {{{W}}_{\text{R}}} $取不同值时的控制国产钟的稳定度

    Figure 5.  Stability of the controlled domestic clock with different values of the constrained matrix $ {{{W}}_{\text{R}}} $.

    图 6  约束矩阵$ {{{W}}_{\text{R}}} $取不同值时控制测量值的稳定度

    Figure 6.  Stability of control measurement with different values of the constrained matrix $ {{{W}}_{\text{R}}} $.

    图 7  不同控制间隔的同步时间比较

    Figure 7.  Comparison of synchronization time with different control interval.

    图 8  同步后不同控制间隔的测量值

    Figure 8.  Measurements at different control intervals after synchronization.

    图 9  基于不同控制间隔的国产钟的稳定度

    Figure 9.  Stability of the domestic clock based on different control intervals.

    图 10  基于不同控制间隔的控制测量值的稳定度

    Figure 10.  Stability of control measurements based on different control intervals.

    图 11  控制后Cs3050与UTCr的相位偏差

    Figure 11.  Phase deviation of the controlled Cs3050 from the UTCr.

    图 12  自由运行Cs3050与驾驭后Cs3050相对于UTCr的频率稳定度

    Figure 12.  Frequency stability of free running Cs3050 and controlled Cs3050 relatived to UTCr.

    表 1  同步后不同$ {{{W}}_{\text{R}}} $值的3倍标准差($ 3\sigma $)

    Table 1.  Three times standard deviation of different $ {{{W}}_{\text{R}}} $values after synchronization.

    $ {{{W}}_{\text{R}}} $
    1/21102104
    $ 3\sigma $的值/ns1.761.833.036.26
    DownLoad: CSV

    表 2  同步后不同控制间隔测量值的3倍标准差($ 3\sigma $)

    Table 2.  Three times standard deviation of different control intervals after synchronization.

    控制间隔/h
    1248
    $ 3\sigma $的值/ns1.832.293.104.48
    DownLoad: CSV

    表 3  自由运行Cs3050与驾驭后Cs3050相对于UTCr的频率稳定度

    Table 3.  Frequency stability of free running Cs3050 and controlled Cs3050 relative to UTCr.

    取样间隔/d
    10 20 30 40
    Allan偏差
    (Cs3050)
    1.85×10–14 2.16×10–14 2.10×10–14 2.50×10–14
    Allan偏差
    (控制Cs3050)
    1.24×10–15 9.17×10–16 8.86×10–16 6.73×10–16
    DownLoad: CSV

    表 4  自由运行 Cs3050相对于UTCr的频率漂移

    Table 4.  Frequency drift of free-running Cs3050 with respect to UTCr.

    估计周期 (MJD) 59978—60007 60008—60037 60038—60067 60068—60097 60098—60127
    频率漂移/(ns·d–1) 0.1938 –0.0236 0.0446 –0.2062 0.1859
    估计周期 (MJD) 60128—60157 60158—60187 60188—60217 60218—60247 60248—60277
    频率漂移/(ns·d–1) –0.0374 –0.1158 0.3041 0.0457 0.1263
    DownLoad: CSV

    表 5  控制Cs3050相对于UTCr的频率漂移

    Table 5.  Frequency drift of controlled Cs3050 relative to UTCr.

    估计周期(MJD) 59978—60007 60008—60037 60038—60067 60068—60097 60098—60127
    频率漂移/(ns·d–1) 0.0050 0.0010 –0.0131 0.0031 0.0016
    估计周期(MJD) 60128—60157 60158—60187 60188—60217 60218—60247 60248—60277
    频率漂移/(ns·d–1) –0.0088 0.0082 0.0143 –0.0029 –0.0003
    DownLoad: CSV
  • [1]

    Godel M, Schmidt T D, Furthner J 2019 Metrologia 56 3Google Scholar

    [2]

    Schmidt T D, Trainotti C, Furthner J 2019 Proceedings of the Precise Time and Time Interval Meeting ( ION PTTI 2019), Reston, Virginia, January 28–31, 2019 p290

    [3]

    Galleani L, Signorile G, Formichella V, Sesia I 2020 Metrologia 57 3Google Scholar

    [4]

    Arias E, Panfilo G, Petit G 2011 Metrologia 48 S145Google Scholar

    [5]

    McCarthy D 2011 Metrologia 48 S132Google Scholar

    [6]

    Koppang P A 2016 Metrologia 53 R60Google Scholar

    [7]

    陈法喜, 赵侃, 李立波, 郭宝龙 2022 物理学报 71 230702Google Scholar

    Chen F X, Zhao K, Li L B, Guo B L 2022 Acta Phys. Sin. 71 230702Google Scholar

    [8]

    Song H J, Dong S W, Wu W J, Jiang M, Wang W X 2018 Metrologia 55 350Google Scholar

    [9]

    韩孟纳, 童明雷 2023 物理学报 72 079701Google Scholar

    Han M N, Tong M L 2023 Acta Phys. Sin. 72 079701Google Scholar

    [10]

    Kaczmarek J, Miczulski W, Koziol M, Czubla A 2013 IEEE Trans. Instrum. Meas 65 2828Google Scholar

    [11]

    Panfilo G, Harmegnies A, Tisserand L 2012 Metrologia 49 49Google Scholar

    [12]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [13]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [14]

    宋会杰, 董绍武, 王翔, 章宇, 王燕平 2020 物理学报 69 170201Google Scholar

    Song H J, Dong S W, Wang X, Zhang Y, Wang Y P 2020 Acta Phys. Sin. 69 170201Google Scholar

    [15]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报(信息科学版) 44 1205Google Scholar

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205Google Scholar

    [16]

    Panfilo G, Arias E F 2010 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57 140Google Scholar

    [17]

    Tavella P, Thomas C 1991 Metrologia 28 2Google Scholar

    [18]

    刘云, 王文海, 贺德晶, 周勇壮, 沈咏, 邹宏新 2023 物理学报 72 184202Google Scholar

    Liu Y, Wang W H, He D J, Zhou Y Z, Shen Y, Zou H X 2023 Acta Phys. Sin. 72 184202Google Scholar

    [19]

    梁悦, 谢勇辉, 陈鹏飞, 帅涛, 裴雨贤, 徐昊天, 赵阳, 夏天, 潘晓燕, 张朋军, 林传富 2023 物理学报 72 013702Google Scholar

    Liang Y, Xie Y H, Chen P F, Shuai T, Pei Y X, Xu H T, Zhao Y, Xia T, Pan X Y, Zhang P J, Lin C F 2023 Acta Phys. Sin. 72 013702Google Scholar

    [20]

    邵晓东, 韩海年, 魏志义 2021 物理学报 70 134204Google Scholar

    Shao X D, Han H N, Wei Z Y 2021 Acta Phys. Sin. 70 134204Google Scholar

    [21]

    Galleani L 2008 Metrologia 45 S175Google Scholar

    [22]

    Tavella P 2008 Metrologia 45 S183Google Scholar

    [23]

    Yao J, Parker T E, Ashby N, Levine J 2018 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65 127Google Scholar

  • [1] Liang Yue, Xie Yong-Hui, Chen Peng-Fei, Shuai Tao, Pei Yu-Xian, Xu Hao-Tian, Zhao Yang, Xia Tian, Pan Xiao-Yan, Zhang Peng-Jun, Lin Chuan-Fu. Simulation analysis of hydrogen atomic clock double state-selection beam optical system. Acta Physica Sinica, 2023, 72(1): 013702. doi: 10.7498/aps.72.20221363
    [2] Chen Ze-Rui, Liu Guang-Cun, Yu Zhen-Hua. Collision clock shift of two Fermi atoms in harmonic potentials. Acta Physica Sinica, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [3] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [4] Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Zhang Yu, Wang Yan-Ping. An improved Kalman filter time scale algorithm for atomic clock noise variation. Acta Physica Sinica, 2020, 69(17): 170201. doi: 10.7498/aps.69.20191920
    [5] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [6] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [7] Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing, Chang Hong. Interrogation of spin polarized clock transition in strontium optical lattice clock. Acta Physica Sinica, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [8] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [9] Xu Qin-Fang, Yin Mo-Juan, Kong De-Huan, Wang Ye-Bing, Lu Ben-Quan, Guo Yang, Chang Hong. Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock. Acta Physica Sinica, 2018, 67(8): 080601. doi: 10.7498/aps.67.20172733
    [10] Zhang Xi, Liu Hui, Jiang Kun-Liang, Wang Jin-Qi, Xiong Zhuan-Xian, He Ling-Xiang, Lü Bao-Long. Transfer cavity scheme for stabilization of lattice laser in ytterbium lattice clock. Acta Physica Sinica, 2017, 66(16): 164205. doi: 10.7498/aps.66.164205
    [11] Zhang Xing, Zhang Yi, Zhang Jian-Wei, Zhang Jian, Zhong Chu-Yu, Huang You-Wen, Ning Yong-Qiang, Gu Si-Hong, Wang Li-Jun. 894 nm high temperature operating vertical-cavity surface-emitting laser and its application in Cs chip-scale atomic-clock system. Acta Physica Sinica, 2016, 65(13): 134204. doi: 10.7498/aps.65.134204
    [12] Jia Meng, Zhao Gang, Hou Jia-Jia, Tan Wei, Qiu Xiao-Dong, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Research and data processing of double locked cavity ringdown absorption spectroscopy. Acta Physica Sinica, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [13] Yin Yi, Zhang Yi, Tan Bo-Zhong, Chen Jie-Hua, Gu Si-Hong. Study on characteristics of coherent population trapping spectral line for chip-scale atomic clock. Acta Physica Sinica, 2015, 64(3): 034207. doi: 10.7498/aps.64.034207
    [14] Lin Xu, Luo Zhi-Cai. A new noise covariance matrix estimation method of Kalman filter for satellite clock errors. Acta Physica Sinica, 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [15] Liu Yang-Yang, Lian Bao-Wang, Zhao Hong-Wei, Liu Ya-Qing. Indoor pseudolite relative localization algorithm with kalman filter. Acta Physica Sinica, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [16] Wu Chang-Jiang, Ruan Jun, Chen Jiang, Zhang Hui, Zhang Shou-Gang. A two-dimensional magneto-optical trap for a cesium fountain clock. Acta Physica Sinica, 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [17] Gao Feng, Wang Ye-Bing, Tian Xiao, Xu Peng, Chang Hong. Observation of transitions in strontium triplet state and its application in optical clock. Acta Physica Sinica, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [18] Zhang Lu, Zhong Su-Chuan, Peng Hao, Luo Mao-Kang. Stochastic resonance in an over-damped linear oscillator driven by multiplicative quadratic noise. Acta Physica Sinica, 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [19] Xu Zhi-Jun, Li Peng-Hua. Second interference and amplification effect of a Bose-condensed gas. Acta Physica Sinica, 2007, 56(10): 5607-5612. doi: 10.7498/aps.56.5607
    [20] KE XI-ZHENG, WU ZHEN-SEN. CHAOS OF ATOMIC CLOCK NOISE AND ITS STATISTICAL CHARACTERISTICS. Acta Physica Sinica, 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
Metrics
  • Abstract views:  2193
  • PDF Downloads:  53
  • Cited By: 0
Publishing process
  • Received Date:  27 November 2023
  • Accepted Date:  22 December 2023
  • Available Online:  03 January 2024
  • Published Online:  20 March 2024

/

返回文章
返回