-
Realizing the independent control of the national standard time has important practical significance under the current international situation. This paper generates an independent time scale that does not rely on external references by studying the self-developed cesium fountain primary frequency standard and domestic optically pumped small cesium clocks. The specific approach is to use the cesium fountain primary frequency standard as a frequency reference to predict the frequency drift of the optically pumped small cesium clocks. By analyzing the noise characteristics of the optically pumped small cesium clocks, the state equation of the atomic clock was established, and the state of the optically pumped small cesium clock was estimated based on the Kalman filtering algorithm. The calculation of the time scale is based on the frequency state estimation and frequency drift state estimation of atomic clocks as the forecast values, and is achieved through the weight algorithm. The weight algorithm based on prediction error and the weight algorithm based on noise characteristics were studied. The results show that in the case of using Kalman filtering state estimation, the weight algorithm based on prediction error significantly improves the accuracy of the independent time scale. The cesium fountain primary frequency standard was selected as the frequency reference to predict the frequency drift of the optically pumped small cesium clock. The accuracy and long-term stability of the independent time scale calculated were significantly better than those when the time scale itself was used as the frequency reference. Taking the international standard time(UTCr) as the reference, the accuracy of the independent time scale is maintained within 15 ns. The frequency stability with a sampling interval of 1 day was 1.57×10-14, that with a sampling interval of 15 days was 4.29×10-15, and that with a sampling interval of 30 days was 2.87×10-15. It can meet the current national time demand.
-
Keywords:
- Atomic clock state model /
- Atomic clock noise /
- Time scale /
- Kaman filtering
-
[1] Greenhall C A 2003 Metrologia 40 S335
[2] Panfilo G, Harmegnies A, Tisserand L 2012 Metrologia 49 49
[3] Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285
[4] Song H J, Dong S W, Zhang Y, Wang X, Guo D, An W, Qi Y, Zhang S G 2025 Phys. Scr. 100 015217
[5] Song H J, Dong S W, Wang X, Jiang M, Zhang Y, Guo D, Zhang J H 2024 Acta Phys. Sin. 73060201 (in Chinese) [宋会杰,董绍武,王翔,姜萌,章宇,郭栋,张继海 2024 物理学报 73 060201]
[6] Song H J, Dong S W, Qu L L, Wang X, Guo D 2021 JINST 16 P06032
[7] Song H J, Dong S W, Wang X, Zhang Y, Wang Y P 2020 Acta Phys. Sin. 69170201 (in Chinese)[宋会杰,董绍武,王翔,章宇,王燕平 2020 物理学报 69 170201]
[8] Song H J, Dong S W, Wu W J, Jiang M, Wang W X2018 Metrologia 55350
[9] Liu Y, Wang W H, He D J, Zhou Y Z, Shen Y, Zou H X 2023 Acta Phys. Sin. 72 171 (in Chinese) [刘云,王文海,贺德晶,周勇壮,沈咏,邹宏新 2023 物理学报72 171]
[10] Liang Y, Xie Y H, Chen P F, Shuai T, Pei Y X, Xu H T, Zhao Y, Xia T, Pan X Y, Zhang P J, Lin C F 2023 Acta Phys. Sin. 72 114 (in Chinese)[梁悦,谢勇辉,陈鹏飞,帅涛,裴雨贤,徐昊天,赵阳,夏天,潘晓燕,张朋军,林传富 2023 物理学报72 114]
[11] Shao X D, Han H N, Wei Z Y 2021 Acta Phys. Sin. 70 134 (in Chinese)[邵晓东, 韩海年, 魏志义 2021 物理学报70 134]
[12] He X, Yuan Z C, Chen J Y, Fang S W, Chen X Z, Wang Q, Qi X H 2022 Front. Phys.10 970030
[13] Shi H B, Qin X M, Chen H J, Yan Y F, Lu Z Q, Wang Z Y, Liu Z J, Guan X L, Wei Q, Shi T T, Chen J B 2025 Phys. Rev.Appl. 23 034018
[14] Guo G K, Li C, Hou D, Liu K, Sun F Y, Zhang S G 2023 Appl. Sci. 13 9155
[15] Domnin Y S, Baryshev V N, Boyko A I, Elkin G A, Novoselov A V, Kopylov L N, Kupalov D S 2013 Meas. Tech. 55 1155
[16] Levi F, Calonico D, Calosso C E, Godone A, Micalizio S, Costanzo G A 2014 Metrologia 51 270
[17] Shi J R, Wang X L, Yang F, Bai Y, Guan Y, Fan S C, Liu D D, Ruan J, Zhang S G 2023 Chin. Phys. B 32 040602
[18] Wang X L, Ruan J, Liu D D, Guan Y, Shi J R, Yang F, Bai Y, Zhang H, Fan S C, Wu W J, Zhao S H, Zhang S G 2023 Metrologia 60 065012
[19] Rovera G D, Bize S, Chupin B, Guéna J, Laurent P H, Rosenbusch P, Uhrich P, Abgrall M 2016 Metrologia 53 S81
[20] Bauch A, Weyers S, Piester D, Staliuniene E, Yang W 2012 Metrologia 49 180
[21] Galleani L, Signorile G, Formichella V, Sesia I 2020 Metrologia 57 065015
[22] Song H J, Dong S W, Wang X, Wang Y P, Zhang J H, Qu L L, Zhao S H, Zhang S G 2022 Journary of Time and Frequency 45(4) 270(in Chinese) [宋会杰,董绍武,王翔,王燕平,张继海,屈俐俐,张首刚 2022 时间频率学报 45(4) 270]
[23] Zucca C, Tavella P 2005IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52289
[24] Stein S R 1992 24th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting, McLean, VA, December 1-3, 1992 p289
[25] Coleman M J, Beard R L 2020 Navigation 67 333
[26] Wang X B, Shi F F, Gong D L, Xu S Y, Li Z N, Fu G T, Li Q 2020 Metrologia 57 065009
[27] Greenhall C A, 2001 33rd Annual precise time and time interval systems and applications meeting, Long Beach, CA, November 27-29, 2001 p445
[28] Wu Y W, Liu S R 2023 Metrologia 60 065009
Metrics
- Abstract views: 56
- PDF Downloads: 2
- Cited By: 0