Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An improved Kalman filter time scale algorithm for atomic clock noise variation

Song Hui-Jie Dong Shao-Wu Wang Xiang Zhang Yu Wang Yan-Ping

Citation:

An improved Kalman filter time scale algorithm for atomic clock noise variation

Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Zhang Yu, Wang Yan-Ping
PDF
HTML
Get Citation
  • Kalman filter time scale algorithm is a method of real-time estimating atomic clock state. It is of great practical value in the time-keeping work. Reliable Kalman filter time scale algorithm requires a reliable atomic clock state model, a random model and a reasonable estimation method. However, it is difficult to construct accurate state model when the noises of atomic clock change. The random model is generally based on the prior statistical information about atomic clock noises, and the prior statistical information may be distorted. In the process of time scale calculation, the noises of atomic clocks need estimating in the Kalman filter time scale algorithm, which is quantified according to the intensity of the noise. With the change of the external environment or aging of atomic clock, the noise intensity may change, resulting in the disturbance of atomic clock state estimation in the Kalman filter time scale algorithm, which further affects the accuracy and stability of the time scale. On the other hand, the error of the noise intensity estimation of atomic clocks will also affect the performance of time scale. Therefore, it is necessary to control the disturbance caused by the variation of noise intensity or the estimation error of noise intensity. In this regard, an adaptive factor is introduced to improve the Kalman filter time scale algorithm, and another adaptive factor is introduced into the state prediction covariance matrix in Kalman filter time scale algorithm. And the values of the two adaptive factors are calculated in real time by using statistics to control the growth of the state prediction covariance. The disturbance of state estimation of atomic clock is reduced, and the accuracy and stability of time scale are improved. In this paper, the sampling interval of simulated data and the measured data are 300 s and 3600 s respectively. The simulated data and measured data are used to calculate the overlapping Allan deviations of the time scale. The results show that the improved Kalman filter time scale algorithm can improve the stability of the sampling time more than 14400 s compared with classical Kalman filter time scale algorithm, and affect the stability of the sampling time less than 14400 s. The degree of influence is related to the weight algorithm of atomic clock. The measured data in this paper are treated by the “predictability” weighting algorithm, which guarantees the long-term stability of time scale. So the simulated data and measured data show that compared with classical Kalman filter time scale algorithm, the improved Kalman filter clock time scale algorithm can improve the accuracy and the long-term stability of time scale.
      Corresponding author: Song Hui-Jie, songhuijie@ntsc.ac.cn
    [1]

    陈卫东, 刘要龙, 朱奇光, 陈颖 2013 物理学报 62 170506Google Scholar

    Chen W D, Liu Y L, Zhu Q G, Chen Y 2013 Acta Phys. Sin. 62 170506Google Scholar

    [2]

    刘洋洋, 廉保旺, 赵宏伟, 刘亚擎 2014 物理学报 63 228402Google Scholar

    Liu Y Y, Lian B W, Zhao H W, Zhao H W, Liu Y Q 2014 Acta Phys. Sin. 63 228402Google Scholar

    [3]

    林旭, 罗志才 2015 物理学报 64 080201Google Scholar

    Lin X, Luo Z C 2015 Acta Phys. Sin. 64 080201Google Scholar

    [4]

    赵龙 2012 物理学报 61 104301Google Scholar

    Zhao L 2012 Acta Phys. Sin. 61 104301Google Scholar

    [5]

    郭海荣, 杨元喜, 何海波, 徐天河 2010 测绘学报 39 146

    Guo H R, Yang Y X, He H B, Xu T H 2010 Acta Geod. Cartogr. Sin. 39 146

    [6]

    Greenhall C A 2003 Metrologia 40 335Google Scholar

    [7]

    Davis J A, Greenhall C A, Stacey P W 2005 Metrologia 42 1Google Scholar

    [8]

    Greenhall C A 2006 Metrologia 43 311

    [9]

    Suess M, Greenhall C A 2012 Metrologia 49 588Google Scholar

    [10]

    Parisi F, Panfilo G 2016 Metrologia 53 1185Google Scholar

    [11]

    伍贻威, 牟卫华, 龚航, 朱祥维, 欧钢 2016 武汉大学学报 信息科学版 41 1253

    Wu Y W, Mu W H, Gong H, Zhu X W, Ou G 2016 Geomat. Inf. Sci. Wuhan Univ. 41 1253

    [12]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报. 信息科学版 44 1205

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205

    [13]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [14]

    Chaffee J W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 655Google Scholar

    [15]

    Brown K R Jr 1991 Proceeding of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991) Albuquerque, NM, USA, September 11−13, 1991 p223

    [16]

    杨元喜 2006 自适应动态导航定位 (第1版) (北京: 测绘出版社) 第189页

    Yang Y X 2006 Adaptive Navigation and Kinematic Positioning (1st Ed.) (Beijing: Surveying and Mapping Press) p189 (in Chinese)

    [17]

    Yang Y, He H, Xu G 2001 J. Geodesy 72 109

    [18]

    Yang Y, Song L, Xu T 2002 J. Geodesy 76 353Google Scholar

    [19]

    Cui X, Yang Y 2006 Proc. Natl. Acad. Sci. U.S.A. 16 846

    [20]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [21]

    Levine J 1999 Rev. Sci. Instrum. 70 2567Google Scholar

    [22]

    Zucca C, Tavella P 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 289

    [23]

    Galleani L, Sacerdote L, Tavella P, Zucca C 2003 Metrologia 40 S257Google Scholar

    [24]

    Suess M, Matsakis D, Greenhall C A 2010 42nd Annual Precise Time and Time Interval Meeting Reston, Virginia, U.S, November 15−18, 2010 p481

  • 图 1  基于两种算法模拟的AHM1时间偏差改正值 (a) 基于Kalman滤波算法模拟的AHM1的时间偏差改正值; (b) 基于改进Kalman滤波算法模拟的AHM1时间偏差改正值

    Figure 1.  The corrected time deviations of modeling AHM1 based on two algorithms: (a) The corrected time deviations of modelling AHM1 based on Kalman filter algorithm; (b) the corrected time deviations of modelling AHM1 based on modified Kalman filter algorithm.

    图 2  基于两种算法的模拟AHM2的时间偏差改正值 (a) 基于Kalman滤波算法模拟的AHM2的时间偏差改正值; (b) 基于改进Kalman滤波算法模拟的AHM2的时间偏差改正值

    Figure 2.  The corrected time deviations of modelling AHM2 based on two algorithms: (a) The corrected time deviations of modelling AHM2 based on Kalman filter algorithm; (b) the corrected time deviations of modelling AHM2 based on modified Kalman filter algorithm.

    图 3  基于两种Kalman滤波算法的时间尺度

    Figure 3.  Time scale based on two Kalman filter algorithms.

    图 4  基于两种Kalman滤波算法的时间尺度的重叠Allan偏差

    Figure 4.  The overlapping Allan deviation of time scale based on two Kalman filter algorithms.

    图 5  基于两种Kalman滤波算法的时间尺度

    Figure 5.  Time scales based on two Kalman filter algorithms.

    图 6  基于两种Kalman滤波算法的时间尺度的稳定度

    Figure 6.  Time scale stabilities based on two Kalman filter algorithms.

    表 1  基于两种Kalman滤波算法的时间尺度的重叠Allan偏差

    Table 1.  The overlapping Allan deviations of time scale based on two Kalman filter algorithms.

    取样时间/102 sKF scale/10–14R-KF scale/10–14
    39.8513.80
    66.738.75
    124.385.20
    302.502.70
    601.761.85
    1201.221.24
    3000.850.73
    6000.880.57
    12000.890.63
    DownLoad: CSV

    表 2  原子钟的相对权重

    Table 2.  Relative weights of atomic clocks.

    原子钟编号HM4926HM4967HM0296Cs3436Cs2098
    相对权重0.300.300.140.190.07
    DownLoad: CSV

    表 3  原子钟的噪声强度

    Table 3.  Noise intensity of atomic clocks.

    原子钟
    编号
    q1WFM/10–36 [s2/s]q2RWFM/10–50 [s2/s3]q3RWFM/[s2/s5]
    HM49264.644.994.27 × 10–60
    HM49675.884.603.87 × 10–60
    HM02962.014.106.80 × 10–49
    Cs343626.9000
    Cs20985.4300
    DownLoad: CSV

    表 4  基于两种Kalman滤波算法的统计值

    Table 4.  Statistical values based on two Kalman filter algorithms.

    计算方法最大偏
    差值/ns
    最小值偏
    差值/ns
    平均偏
    差值/ns
    KF scale4.36–3.130.98
    R-KF scale1.11–2.65–0.47
    DownLoad: CSV

    表 5  基于两种Kalman滤波算法的时间尺度的重叠阿伦偏差值

    Table 5.  The overlapping Allan deviations of time scale based on two Kalman filter algorithms.

    Sample time/103 sKF scale/10–14R-KF scale/10–14
    3.601.941.64
    7.201.341.17
    14.401.030.92
    36.000.920.85
    72.000.740.69
    144.000.530.51
    360.000.270.25
    DownLoad: CSV
  • [1]

    陈卫东, 刘要龙, 朱奇光, 陈颖 2013 物理学报 62 170506Google Scholar

    Chen W D, Liu Y L, Zhu Q G, Chen Y 2013 Acta Phys. Sin. 62 170506Google Scholar

    [2]

    刘洋洋, 廉保旺, 赵宏伟, 刘亚擎 2014 物理学报 63 228402Google Scholar

    Liu Y Y, Lian B W, Zhao H W, Zhao H W, Liu Y Q 2014 Acta Phys. Sin. 63 228402Google Scholar

    [3]

    林旭, 罗志才 2015 物理学报 64 080201Google Scholar

    Lin X, Luo Z C 2015 Acta Phys. Sin. 64 080201Google Scholar

    [4]

    赵龙 2012 物理学报 61 104301Google Scholar

    Zhao L 2012 Acta Phys. Sin. 61 104301Google Scholar

    [5]

    郭海荣, 杨元喜, 何海波, 徐天河 2010 测绘学报 39 146

    Guo H R, Yang Y X, He H B, Xu T H 2010 Acta Geod. Cartogr. Sin. 39 146

    [6]

    Greenhall C A 2003 Metrologia 40 335Google Scholar

    [7]

    Davis J A, Greenhall C A, Stacey P W 2005 Metrologia 42 1Google Scholar

    [8]

    Greenhall C A 2006 Metrologia 43 311

    [9]

    Suess M, Greenhall C A 2012 Metrologia 49 588Google Scholar

    [10]

    Parisi F, Panfilo G 2016 Metrologia 53 1185Google Scholar

    [11]

    伍贻威, 牟卫华, 龚航, 朱祥维, 欧钢 2016 武汉大学学报 信息科学版 41 1253

    Wu Y W, Mu W H, Gong H, Zhu X W, Ou G 2016 Geomat. Inf. Sci. Wuhan Univ. 41 1253

    [12]

    宋会杰, 董绍武, 王燕平, 安卫, 侯娟 2019 武汉大学学报. 信息科学版 44 1205

    Song H J, Dong S W, Wang Y P, An W, Hou J 2019 Geomat. Inf. Sci. Wuhan Univ. 44 1205

    [13]

    宋会杰, 董绍武, 屈俐俐, 王翔, 广伟 2017 仪器仪表学报 38 1809Google Scholar

    Song H J, Dong S W, Qu L L, Wang X, Guang W 2017 Chin. J. Sci. Instrum. 38 1809Google Scholar

    [14]

    Chaffee J W 1987 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34 655Google Scholar

    [15]

    Brown K R Jr 1991 Proceeding of the 4th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS 1991) Albuquerque, NM, USA, September 11−13, 1991 p223

    [16]

    杨元喜 2006 自适应动态导航定位 (第1版) (北京: 测绘出版社) 第189页

    Yang Y X 2006 Adaptive Navigation and Kinematic Positioning (1st Ed.) (Beijing: Surveying and Mapping Press) p189 (in Chinese)

    [17]

    Yang Y, He H, Xu G 2001 J. Geodesy 72 109

    [18]

    Yang Y, Song L, Xu T 2002 J. Geodesy 76 353Google Scholar

    [19]

    Cui X, Yang Y 2006 Proc. Natl. Acad. Sci. U.S.A. 16 846

    [20]

    Panfilo G, Harmegnies A, Tisserand L 2014 Metrologia 51 285Google Scholar

    [21]

    Levine J 1999 Rev. Sci. Instrum. 70 2567Google Scholar

    [22]

    Zucca C, Tavella P 2005 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52 289

    [23]

    Galleani L, Sacerdote L, Tavella P, Zucca C 2003 Metrologia 40 S257Google Scholar

    [24]

    Suess M, Matsakis D, Greenhall C A 2010 42nd Annual Precise Time and Time Interval Meeting Reston, Virginia, U.S, November 15−18, 2010 p481

  • [1] Song Hui-Jie, Dong Shao-Wu, Wang Xiang, Jiang Meng, Zhang Yu, Guo Dong, Zhang Ji-Hai. Frequency control algorithm of domestic optically pumped small cesium clock based on optimal control theory. Acta Physica Sinica, 2024, 73(6): 060201. doi: 10.7498/aps.73.20231866
    [2] Huo Yuan-Lian, Wang Dan-Feng, Long Xiao-Qiang, Lian Pei-Jun, Qi Yong-Feng. A variable-scale S-type kernel fractional low-power adaptive filtering algorithm. Acta Physica Sinica, 2021, 70(15): 158401. doi: 10.7498/aps.70.20210075
    [3] Zhang Yu-Yan, Yin Dong-Zhe, Wen Yin-Tang, Luo Xiao-Yuan. Planar array capacitance imaging based on adaptive Kalman filter. Acta Physica Sinica, 2021, 70(11): 118102. doi: 10.7498/aps.70.20210442
    [4] Zhang Yi. Mei’s symmetry theorems for non-migrated Birkhoffian systems on a time scale. Acta Physica Sinica, 2021, 70(24): 244501. doi: 10.7498/aps.70.20210372
    [5] Jia Meng, Zhao Gang, Hou Jia-Jia, Tan Wei, Qiu Xiao-Dong, Ma Wei-Guang, Zhang Lei, Dong Lei, Yin Wang-Bao, Xiao Lian-Tuan, Jia Suo-Tang. Research and data processing of double locked cavity ringdown absorption spectroscopy. Acta Physica Sinica, 2016, 65(12): 128701. doi: 10.7498/aps.65.128701
    [6] Lin Xu, Luo Zhi-Cai. A new noise covariance matrix estimation method of Kalman filter for satellite clock errors. Acta Physica Sinica, 2015, 64(8): 080201. doi: 10.7498/aps.64.080201
    [7] Liu Yang-Yang, Lian Bao-Wang, Zhao Hong-Wei, Liu Ya-Qing. Indoor pseudolite relative localization algorithm with kalman filter. Acta Physica Sinica, 2014, 63(22): 228402. doi: 10.7498/aps.63.228402
    [8] Jia Meng, Fan Yang-Yu, Li Hui-Min. Computation of invariant manifolds with self-adaptive parameter and trajectories continuation method. Acta Physica Sinica, 2010, 59(11): 7686-7692. doi: 10.7498/aps.59.7686
    [9] Zhi Rong, Gong Zhi-Qiang, Zheng Zhi-Hai, Zhou Lei. Scale analysis of global temperature based on correlation matrix theory. Acta Physica Sinica, 2009, 58(3): 2113-2120. doi: 10.7498/aps.58.2113
    [10] Lin Min, Fang Li-Min. Time scales of the evolution in bistable system and the reinforcement of stochastic resonance. Acta Physica Sinica, 2009, 58(4): 2136-2140. doi: 10.7498/aps.58.2136
    [11] Li Yong, Bi Qin-Sheng. Lag synchronization of autocatalytic chemical reaction in continuous stirred tank reactors. Acta Physica Sinica, 2008, 57(10): 6099-6102. doi: 10.7498/aps.57.6099
    [12] Bai Yun, Liu Xin-Yuan, He Ding-Wu, Ru Hong-Yu, Qi Liang, Ji Min-Biao, Zhao Wei, Xie Fei-Xiang, Nie Rui-Juan, Ma Ping, Dai Yuan-Dong, Wang Fu-Ren. Singular value decomposition and adaptive noise reduction for SQUID-based magnetocardiograms. Acta Physica Sinica, 2006, 55(5): 2651-2656. doi: 10.7498/aps.55.2651
    [13] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅱ)nonlinear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1102-1107. doi: 10.7498/aps.52.1102
    [14] Gan Jian-Chao, Xiao Xian-Ci. Adaptive predict-filter of chaotic time series constructed Based on the neighbou rhood in the reconstructed phase space(Ⅰ)linear adaptive filter. Acta Physica Sinica, 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [15] Wei Biao-Lin, Luo Xiao-Shu, Wang Bing-Hong, Quan Hong-Jun, Guo Wei, Fu Jin-Jie. . Acta Physica Sinica, 2002, 51(10): 2205-2210. doi: 10.7498/aps.51.2205
    [16] ZHANG JIA-SHU, XIAO XIAN-CI. A REDUCED PARAMETER SECOND-ORDER VOLTERRA FILTER WITH APPLICATION TO NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES. Acta Physica Sinica, 2001, 50(7): 1248-1254. doi: 10.7498/aps.50.1248
    [17] Zhang Jiashu, Xiao Xianchi. . Acta Physica Sinica, 2000, 49(3): 403-408. doi: 10.7498/aps.49.403
    [18] ZHANG JIA-SHU, XIAO XIAN-CI. NONLINEAR ADAPTIVE PREDICTION OF CHAOTIC TIME SERIES WITH A REDUCED PARAMETER NO NLINEAR ADAPTIVE FILTER. Acta Physica Sinica, 2000, 49(12): 2333-2339. doi: 10.7498/aps.49.2333
    [19] ZHANG JIA-SHU, XIAO XIAN-CI. PREDICTION OF CHAOTIC TIME SERIES BY USING ADAPTIVE HIGHER-ORDER NONLINEAR FOUR IER INFRARED FILTER. Acta Physica Sinica, 2000, 49(7): 1221-1227. doi: 10.7498/aps.49.1221
    [20] KE XI-ZHENG, WU ZHEN-SEN. CHAOS OF ATOMIC CLOCK NOISE AND ITS STATISTICAL CHARACTERISTICS. Acta Physica Sinica, 1998, 47(9): 1436-1449. doi: 10.7498/aps.47.1436
Metrics
  • Abstract views:  6696
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  18 December 2019
  • Accepted Date:  11 May 2020
  • Available Online:  01 June 2020
  • Published Online:  05 September 2020

/

返回文章
返回