Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock

Xu Qin-Fang Yin Mo-Juan Kong De-Huan Wang Ye-Bing Lu Ben-Quan Guo Yang Chang Hong

Citation:

Optical frequency comb active filtering and amplification for second cooling laser of strontium optical clock

Xu Qin-Fang, Yin Mo-Juan, Kong De-Huan, Wang Ye-Bing, Lu Ben-Quan, Guo Yang, Chang Hong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In this paper, we propose an optical frequency comb active filtering and amplification method combined with injection-locking technique to select and amplify a single mode from a femtosecond mode-locked laser. The key concept is to optically inject an optical frequency comb into a single mode grating external cavity semiconductor laser. The optical frequency comb based on a femtosecond mode-locked laser with a narrow mode spacing of 250 MHz is used as a master laser. The center wavelength of the optical frequency comb is 689 nm with a 10 nm spectral width. A single mode grating external cavity semiconductor laser with a grating of 1800 lines/mm is used as a slave laser, and the external-cavity length from the diode surface to the grating is approximately 50 mm. The master laser is injected into the slave laser, and in order to select a single comb mode, we adjust the power of the master laser to control the locking range of the slave laser whose linewidth is smaller than the optical frequency comb repetition rate (250 MHz). While the operating current of the slave laser is set to be 55 mA and a seeding power is adopted to be 240 W, a single longitudinal mode is selected and amplified from 2.5104 longitudinal modes of the femtosecond optical comb despite the low power of the single mode. By tuning the optical frequency comb repetition frequency, the single longitudinal mode follows the teeth of the femtosecond optical comb, indicating the success in the optical frequency comb active filtering and amplification. The locking range is measured to be about 20 MHz. Meanwhile, the repetition frequency of the optical frequency comb is locked to a narrow linewidth 698 nm laser system (Hz level), thus the slave laser inherits the spectral characteristics of the 698 nm laser system. The linewidth is measured to be 280 Hz which is limited by the test beating laser. Then a continuous-wave narrow linewidth 689 nm laser source with a power of 12 mW and a side-mode suppression ratio of 100 is achieved. This narrow linewidth laser is used as a second-stage cooling laser source in the 88Sr optical clock, the cold atoms with a temperature of 3 K and a number of 5106 are obtained. This method can also be used to obtain other laser sources for atomic optical clock, and thus enabling the integrating and miniaturizing of a clock system.
      Corresponding author: Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474282, 61775220), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB21030700), and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant No. QYZDB-SSW-JSC004).
    [1]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [2]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm Chr, Peik E 2016 Phys. Rev. Lett. 116 063001

    [4]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [5]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [6]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 405

    [7]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [9]

    Xu Y L, Xu X Y 2016 Chin. Phys. B 25 103202

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lyu B L 2017 Chin. Phys. Lett. 34 020601

    [11]

    Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z, Wang Y Z 2016 Chin. Phys. Lett. 33 070602

    [12]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701

    [13]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [14]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J 2008 Phys. Rev. Lett. 100 140801

    [15]

    Gurov M, Mcferran J J, Nagrny B, Tyumenev R, Xu Z, Le C Y, Le T R, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [16]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Hfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [17]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [18]

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)[高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704]

    [19]

    Zhang S N, Zhang X G, Cui J Z, Jiang Z J, Shang H S, Zhu C W, Chang P C, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106

    [20]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459

    [21]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [22]

    Moon H S, Kim E B, Park S E, Park C Y 2006 Appl. Phys. Lett. 89 181110

    [23]

    Wu D S, Slavk R, Marra G, Richardson D J 2013 J. Lightwave Technol. 31 2287

    [24]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Rep. 416 1

    [25]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese)[阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [26]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [27]

    Lawrence J S, Kane D M 1999 Opt. Commun. 167 273

    [28]

    Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B, Chang H 2014 AIP Adv. 4 027118

    [29]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

  • [1]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [2]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm Chr, Peik E 2016 Phys. Rev. Lett. 116 063001

    [4]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [5]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [6]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 405

    [7]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [9]

    Xu Y L, Xu X Y 2016 Chin. Phys. B 25 103202

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lyu B L 2017 Chin. Phys. Lett. 34 020601

    [11]

    Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z, Wang Y Z 2016 Chin. Phys. Lett. 33 070602

    [12]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701

    [13]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [14]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J 2008 Phys. Rev. Lett. 100 140801

    [15]

    Gurov M, Mcferran J J, Nagrny B, Tyumenev R, Xu Z, Le C Y, Le T R, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [16]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Hfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [17]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [18]

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)[高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704]

    [19]

    Zhang S N, Zhang X G, Cui J Z, Jiang Z J, Shang H S, Zhu C W, Chang P C, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106

    [20]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459

    [21]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [22]

    Moon H S, Kim E B, Park S E, Park C Y 2006 Appl. Phys. Lett. 89 181110

    [23]

    Wu D S, Slavk R, Marra G, Richardson D J 2013 J. Lightwave Technol. 31 2287

    [24]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Rep. 416 1

    [25]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese)[阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [26]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [27]

    Lawrence J S, Kane D M 1999 Opt. Commun. 167 273

    [28]

    Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B, Chang H 2014 AIP Adv. 4 027118

    [29]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

  • [1] Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong. Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection. Acta Physica Sinica, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [2] Sheng Quan, Wang Meng, Shi Chao-Du, Tian Hao, Zhang Jun-Xiang, Liu Jun-Jie, Shi Wei, Yao Jian-Quan. High-power narrow-linewidth single-frequency pulsed fiber amplifier based on self-phase modulation suppression via sawtooth-shaped pulses. Acta Physica Sinica, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [3] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [4] Li Ting, Lu Xiao-Tong, Zhang Qiang, Kong De-Huan, Wang Ye-Bing, Chang Hong. Evaluation of blackbody-radiation frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [5] Hua Fei, Fang Nian, Wang Lu-Tang. Method of selecting operating point of reservoir computing system based on semiconductor lasers. Acta Physica Sinica, 2019, 68(22): 224205. doi: 10.7498/aps.68.20191039
    [6] Guo Yang, Yin Mo-Juan, Xu Qin-Fang, Wang Ye-Bing, Lu Ben-Quan, Ren Jie, Zhao Fang-Jing, Chang Hong. Interrogation of spin polarized clock transition in strontium optical lattice clock. Acta Physica Sinica, 2018, 67(7): 070601. doi: 10.7498/aps.67.20172759
    [7] Lin Yi-Ge, Fang Zhan-Jun. Strontium optical lattice clock. Acta Physica Sinica, 2018, 67(16): 160604. doi: 10.7498/aps.67.20181097
    [8] Ma Jin-Dong, Wu Hao-Yu, Lu Qiao, Ma Ting, Shi Lei, Sun Qing, Mao Qing-He. Fiber-type difference frequency generation infrared optical frequency comb based on the femtosecond pulses generated by a mode-locked fiber laser. Acta Physica Sinica, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [9] Sun Bo, Wu Jia-Gui, Wang Shun-Tian, Wu Zheng-Mao, Xia Guang-Qiong. Theoretical and experimental investigation on the narrow-linewidth photonic microwave generation based on parallel polarized optically injected 1550 nm vertical-cavity surface-emitting laser. Acta Physica Sinica, 2016, 65(1): 014207. doi: 10.7498/aps.65.014207
    [10] Liu Jiang, Liu Chen, Shi Hong-Xing, Wang Pu. 342 W narrow-linewidth continuous-wave thulium-doped all-fiber laser. Acta Physica Sinica, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [11] Jiao Dong-Dong, Gao Jing, Liu Jie, Deng Xue, Xu Guan-Jun, Chen Jiu-Peng, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang. Development and application of communication band narrow linewidth lasers. Acta Physica Sinica, 2015, 64(19): 190601. doi: 10.7498/aps.64.190601
    [12] Mao Song, Wu Zheng-Mao, Fan Li, Yang Hai-Bo, Zhao Mao-Rong, Xia Guang-Qiong. Acquiring narrow linewidth microwave signals based on an optical injection semiconductor laser under subharmonic microwave modulation. Acta Physica Sinica, 2014, 63(24): 244204. doi: 10.7498/aps.63.244204
    [13] Chen Yu-Lin, Wu Zheng-Mao, Tang Xi, Lin Xiao-Dong, Wei Yue, Xia Guang-Qiong. Optical generation of tunable millimeter-wave based on dual-beam optical injection Locked 1550 nm vertical-cavity surface-emitting laser. Acta Physica Sinica, 2013, 62(10): 104207. doi: 10.7498/aps.62.104207
    [14] Wu Xue-Jian, Wei Hao-Yun, Zhu Min-Hao, Zhang Ji-Tao, Li Yan. Frequency measurement of dual frequency He-Ne laser based on a femtosecond optical frequency comb. Acta Physica Sinica, 2012, 61(18): 180601. doi: 10.7498/aps.61.180601
    [15] Gao Feng, Wang Ye-Bing, Tian Xiao, Xu Peng, Chang Hong. Observation of transitions in strontium triplet state and its application in optical clock. Acta Physica Sinica, 2012, 61(17): 173201. doi: 10.7498/aps.61.173201
    [16] Lin Xiao-Dong, Deng Tao, Xie Yi-Yuan, Wu Jia-Gui, Chen Jian-Guo, Wu Zheng-Mao, Xia Guang-Qiong. Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing. Acta Physica Sinica, 2012, 61(19): 194212. doi: 10.7498/aps.61.194212
    [17] Wu Bo, Yu Jin-Long, Wang Wen-Rui, Han Bing-Chen, Guo Jing-Zhong, Luo Jun, Wang Ju, Zhang Xiao-Yuan, Liu Yi, Yang En-Ze. Generation of microwave subcarrier phase modulation signal based on optical injection into a semiconductor laser. Acta Physica Sinica, 2012, 61(5): 054208. doi: 10.7498/aps.61.054208
    [18] An Yi, Wang Yun-Cai, Zhang Ming-Jiang, Niu Sheng-Xiao, Wang An-Bang. All optical wavelength conversion and optimum longitudinal mode selection using an injection-locked Fabry-Perot laser diode. Acta Physica Sinica, 2008, 57(8): 4995-5000. doi: 10.7498/aps.57.4995
    [19] Mutual injection locking of two individual fiber lasers. Acta Physica Sinica, 2007, 56(12): 7046-7050. doi: 10.7498/aps.56.7046
    [20] GUO CHANG-ZHI, LIU PENG. STABILITY OF THE COHERENT LIGHT INJECTION LOCKING IN SEMICONDUCTOR LASERS,THE RELATED INSTA BILITY PHENOMENA AND THEIR ROUTES TO CHAOS. Acta Physica Sinica, 1990, 39(11): 1730-1738. doi: 10.7498/aps.39.1730
Metrics
  • Abstract views:  6594
  • PDF Downloads:  158
  • Cited By: 0
Publishing process
  • Received Date:  25 December 2017
  • Accepted Date:  02 February 2018
  • Published Online:  20 April 2019

/

返回文章
返回