搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于光频传递的通信波段窄线宽激光器研制及应用

焦东东 高静 刘杰 邓雪 许冠军 陈玖朋 董瑞芳 刘涛 张首刚

引用本文:
Citation:

用于光频传递的通信波段窄线宽激光器研制及应用

焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚

Development and application of communication band narrow linewidth lasers

Jiao Dong-Dong, Gao Jing, Liu Jie, Deng Xue, Xu Guan-Jun, Chen Jiu-Peng, Dong Rui-Fang, Liu Tao, Zhang Shou-Gang
PDF
导出引用
  • 通信波段窄线宽激光器在基于光纤的光学频率传递中有着重要应用. 本文报道了1550 nm超窄线宽光纤激光器的研制及其在光学频率传递中的初步应用结果. 利用一台激光光源, 分别锁定到两个参考腔上(精细度分别为344000和296000), 锁定后经拍频比对测得单台激光线宽优于1.9 Hz, 秒级频率稳定度为1.710-14, 优于国内同类报道. 将研制的超窄线宽激光器用于光纤光学频率传递, 在50 km光纤盘上实现了 7.510-17/s的传递稳定度, 较采用商用光纤激光器提高了3.2倍.
    Ultra-stable lasers at optical communication wavelengths have important applications in developing optical frequency transfer via optical fibers. We report the recent development of a 1550 nm stable laser system built at National Time Service Center and its preliminary application in optical frequency transfer via laboratory fibers. In the experiment, the conventional Pound-Drever-Hall(PDH) frequency stabilization technology is implemented to achieve the ultra-stable laser at the wavelength of 1550 nm. The output of a single laser source is split and locked onto the resonant frequency of two independent reference cavities, of 344000 and 296000 respectively. The frequency of the laser source is actively stabilized to the first reference cavity by piezo and external frequency shifters simultaneously and the total control bandwidth is measured to be 50 kHz. Then the laser frequency is shifted and stabilized to the second reference cavity by an acousto-optical modulator. A 5 m long single-mode fiber is used to bring the first laser beam to the second reference cavity which unfortunately induces unexpected phase noise by environmental distortions. The laser linewidth broadened is determined to be 0.27 Hz by the beat note measurement between the input and output beams of the fiber. To evaluate the frequency stability of the laser, the frequency control signal within the control bandwidth of the second stable laser system is analyzed by a spectrum analyzer and a frequency counter. The control signal shows a Lorentz linewidth of 2.7 Hz and a frequency stability of 2.510-14/s, corresponding to a single laser linewidth of 1.9 Hz with a frequency stability of 1.710-14/s if the two stable lasers have similar frequency stability. Applying this ultra-stable laser system as the laser source for the fiber-based optical frequency transfer, a short-term frequency transfer stability of 7.510-17/s is demonstrated through a 50 km-long fiber spool, while a frequency transfer stability of 2.410-16/s is achieved by a similar setup except that the laser source is a kHz-level linewidth laser. In the experiment an Agilent 53232 A frequency counter is applied to record the beat note signal in the auto mode. In the end, we discuss the possible improvements of the stable laser system, including the miniaturization of the optical setup, optimization of the control bandwidth and shortening of the response time of control loop.
      通信作者: 董瑞芳, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn ; 刘涛, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
    • 基金项目: 国家自然科学基金委重大科研仪器设备研制专项(批准号: 61127901), 国家自然科学基金(批准号: 11273024, 61025023), 国家自然科学基金青年科学基金(批准号: 11403031)、中组部青年拔尖人才支持计划 项目(批准号: 组厅字[2013]33 号)、中科院科技创新交叉与合作团队 项目(批准号: 中科院人教字(2012) 119 号)和中国科学院重点部署项目(批准号: KJZD-EW-W02)资助的课题.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn ; Liu Tao, dongruifang@ntsc.ac.cn;taoliu@ntsc.ac.cn
    • Funds: Project supported by the Major Scientific Instruments and National Development Funding Projects of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the Fund from the FirstYouth Top-Notch Talent Program of Organization Department of the CPC Central Committee (Grant No. [2013]33), the fund for the cross and cooperative science and technology innovation team project of the CAS, China (Grant No. (2012) 119), and the Key Deployment Project of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-W02).
    [1]

    Harry G M, Armandula H, Black E, Crooks D R M, Cagnoli G, Hough J, Murray P, Reid S, Rowan S, Sneddon P, Fejer M M, Route R, Penn S D 2006 Appl. Opt. 45 1569

    [2]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Class. Quantum Grav. 25 114040

    [3]

    Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J, Bergquist J C 2000 Phys. Rev. Lett. 85 2462

    [4]

    Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T, Ye J 2006 Science 314 1430

    [5]

    Weyers S, Lipphardt B, Schnatz H 2009 Phys. Rev. A 79 031803

    [6]

    Jiang H F 2010 Ph. D. Dissertation (France: University Pairs 13)

    [7]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photon. 6 687

    [8]

    Zhao Y, Wang Q, Meng F, Lin Y G, Wang S K, Li Y, Lin B K, Cao S Y, Cao J P, Fang Z J, Li T C, Zang E J 2012 Opt. Lett. 37 4729

    [9]

    Suo R, Meng F, Fang F, Li T C 2013 The 4th China Satellite Navigation ConferenceWuhan, China, May 15-17, 2013 p141

    [10]

    Black E D 2001 Am. J. Phys. 69 79

    [11]

    Jiang Y Y 2012 Ph. D. Dissertation(Shanghai: East China Normal University) (in Chinese) [蒋燕义 2012 华东师范大学博士论文 (上海: 华东师范大学)]

    [12]

    Ma L S, Jungner P, Ye J, Hall J L 1994 Opt. Lett. 19 1777

    [13]

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602(in Chinese) [刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 刘涛, 张首刚 2015 物理学报 64 120602]

  • [1]

    Harry G M, Armandula H, Black E, Crooks D R M, Cagnoli G, Hough J, Murray P, Reid S, Rowan S, Sneddon P, Fejer M M, Route R, Penn S D 2006 Appl. Opt. 45 1569

    [2]

    Willke B, Danzmann K, Frede M, King P, Kracht D, Kwee P, Puncken O, Savage R L, Schulz B, Seifert F, Veltkamp C, Wagner S, Weels P, Winkelmann L 2008 Class. Quantum Grav. 25 114040

    [3]

    Rafac R J, Young B C, Beall J A, Itano W M, Wineland D J, Bergquist J C 2000 Phys. Rev. Lett. 85 2462

    [4]

    Boyd M M, Zelevinsky T, Ludlow A D, Foreman S M, Blatt S, Ido T, Ye J 2006 Science 314 1430

    [5]

    Weyers S, Lipphardt B, Schnatz H 2009 Phys. Rev. A 79 031803

    [6]

    Jiang H F 2010 Ph. D. Dissertation (France: University Pairs 13)

    [7]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nat. Photon. 6 687

    [8]

    Zhao Y, Wang Q, Meng F, Lin Y G, Wang S K, Li Y, Lin B K, Cao S Y, Cao J P, Fang Z J, Li T C, Zang E J 2012 Opt. Lett. 37 4729

    [9]

    Suo R, Meng F, Fang F, Li T C 2013 The 4th China Satellite Navigation ConferenceWuhan, China, May 15-17, 2013 p141

    [10]

    Black E D 2001 Am. J. Phys. 69 79

    [11]

    Jiang Y Y 2012 Ph. D. Dissertation(Shanghai: East China Normal University) (in Chinese) [蒋燕义 2012 华东师范大学博士论文 (上海: 华东师范大学)]

    [12]

    Ma L S, Jungner P, Ye J, Hall J L 1994 Opt. Lett. 19 1777

    [13]

    Liu J, Gao J, Xu G J, Jiao D D, Yan L L, Dong R F, Jiang H F, Liu T, Zhang S G 2015 Acta Phys. Sin. 64 120602(in Chinese) [刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 刘涛, 张首刚 2015 物理学报 64 120602]

  • [1] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] 杨家齐, 赵刚, 焦康, 高健, 闫晓娟, 赵延霆, 马维光, 贾锁堂. 基于光学反馈频率锁定的窄线宽稳定中红外激光产生技术研究. 物理学报, 2024, 73(1): 014205. doi: 10.7498/aps.73.20231049
    [3] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [4] 文锦辉, 胡婷, 吴琴菲. 快速扫描频率分辨光学开关装置测量超短激光脉冲. 物理学报, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [5] 葛烨, 胡以华, 舒嵘, 洪光烈. 一种新型的用于差分吸收激光雷达中脉冲式光学参量振荡器的种子激光器的频率稳定方法. 物理学报, 2015, 64(2): 020702. doi: 10.7498/aps.64.020702
    [6] 贾石, 于晋龙, 王菊, 王子雄, 陈斌. 重复频率可调谐的超低抖动光窄脉冲源的研究. 物理学报, 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [7] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [8] 刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚. 基于光纤的光学频率传递研究. 物理学报, 2015, 64(12): 120602. doi: 10.7498/aps.64.120602
    [9] 焦健, 高劲松, 徐念喜, 冯晓国, 胡海翔. 基于传递函数的频率选择表面集总参数研究. 物理学报, 2014, 63(13): 137301. doi: 10.7498/aps.63.137301
    [10] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [11] 张建, 高劲松, 徐念喜. 光学透明频率选择表面的设计研究. 物理学报, 2013, 62(14): 147304. doi: 10.7498/aps.62.147304
    [12] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [13] 孟庆林, 原猛, 牟宏宇, 陈友元, 冯海泓. 包络调制率和载波频率对听觉时间调制检测能力的影响. 物理学报, 2012, 61(16): 164302. doi: 10.7498/aps.61.164302
    [14] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [15] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [16] 邓玉强, 郎利影, 邢岐荣, 曹士英, 于 靖, 徐 涛, 李 健, 熊利民, 王清月, 张志刚. Gabor小波分析太赫兹波时间-频率特性的研究. 物理学报, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
    [17] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [18] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [19] 王兆华, 魏志义, 张 杰. 飞秒激光脉冲的频率分辨偏振光学开关法测量研究. 物理学报, 2005, 54(3): 1194-1199. doi: 10.7498/aps.54.1194
    [20] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究. 物理学报, 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
计量
  • 文章访问数:  7422
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-22
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-10-05

/

返回文章
返回