搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤的光学频率传递研究

刘杰 高静 许冠军 焦东东 闫露露 董瑞芳 姜海峰 刘涛 张首刚

引用本文:
Citation:

基于光纤的光学频率传递研究

刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚

Study of optical frequency transfer via fiber

Liu Jie, Gao Jing, Xu Guan-Jun, Jiao Dong-Dong, Yan Lu-Lu, Dong Rui-Fang, Jiang Hai-Feng, Liu Tao, Zhang Shou-Gang
PDF
导出引用
  • 随着光钟研究的发展, 光钟的稳定度和不确定度均达到10-18量级. 通过光纤可以实现光钟频率信号的高精度传输, 有望用于未来“秒”定义的复现. 演示了百公里级实验室光纤上的光学频率传递. 对于在实验室70 km光纤盘上实现的光频传递, 光纤相位噪声抑制在1-250 Hz傅里叶频率范围内均接近于光纤延时极限, 对应传输稳定度(Allan偏差)为秒级稳定度1.2×10-15, 10000 s稳定度为1.4×10-18. 实验室100 km光纤的光频传递秒级稳定度也达到了5×10-15. 提出了光纤噪声用户端补偿的方案, 可以简化星形传递网络中心站的复杂度. 在25 km光纤上演示了该传递方案, 实现的传输稳定度接近传统前置补偿传递方案.
    Optical clocks are considered as promising candidates for redefining the second in the International System of Units. Compared with microwave clocks, optical clocks are powerful tools for the fundamental research such as the constancy of the fundamental constants, the validity of Einstein’s theory of general relativity, and the predictions of quantum electrodynamics. Recently two research groups have demonstrated the optical clocks with an unprecedented precision level of 10-18, which is two orders better than the present primary frequency standard. Using two Sr optical clocks and three Cs fountain clocks, SYRTE group has demonstrated the definition of second with optical clocks.#br#For redefining the second with optical clocks in the future, the optical clocks from the remote laboratories should have a high precision and the frequency of the optical clocks need to be transferred over a long distance, with extremely high precision. Unfortunately the conventional means of frequency transfer such as two-way satellite time and frequency transfer can reach a 10-16 level in one day which is far below the requirement for an optical clocks. Various methods have been developed to transfer optical frequency signal via optical fibers. Especially a research group from Germany has achieved a frequency transfer stability of 10-19 level in hundreds of seconds with a fiber length of 1840 km.#br#We demonstrate the recent development of optical frequency transfer over a 70-km fiber spool at National Time Service Center. The measurement shows that the compensation for the fiber noise is close to the limitation induced by the fiber delay for the Fourier frequency from 1 Hz to 250 Hz. The transfer stability (Allan deviation) of the fiber link is 1.2×10-15 in 1 s averaging time, and 1.4×10-18 in 10000 s. A preliminary test of the optical frequency transfer over a 100-km spooled fiber is achieved with a stability of roughly one order worse than the 71 km result, 5×10-15 in 1 s.#br#We demonstrate a new scheme of remote compensation for optical frequency transfer via fibers against conventional local compensation method. This new scheme has the advantage of great simplification of the local site, which can find applications in massive extension of star network. The key feature is that we transfer the mixture of the round-trip signal and local reference to the remote user’s end via an auxiliary fiber. At remote site, the fiber noise is measured and compensated by AOM2 accordingly.#br#Transfer stabilities of 13×10-15 in 1 s averaging time and 4.8×10-18 in 10000 s are achieved with the remote fiber noise compensation via a 25 km fiber spool. The demonstrated transfer stability is comparable to that obtained by the local fiber noise compensation method.#br#The future star fiber network of optical frequency transfer can benefit from this method, because the simpler local setup is required and even can be shared in the central site for multitudinous remote users.
    • 基金项目: 国家自然科学基金委重大科研仪器设备研制专项(批准号:61127901)、国家自然科学基金(批准号:11273024,61025023)、国家自然科学基金青年科学基金(批准号:11403031)、中国科学院科技创新“交叉与合作团队”项目(中科院人教字(2012)119号)和中国科学院重点部署项目(批准号:KJZD-EW-W02)资助的课题.
    • Funds: Project supported by the Special Fund for Major Scientific Equipment and Instrument Development of the National Natural Science Foundation of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the “Cross and Cooperative” Science and Technology Innovation Team Project of the Chinese Academy of Science, China, and the Key Deployment Project of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-W02).
    [1]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [4]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801

    [5]

    Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573

    [6]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [7]

    Katori H 2011 Nat. Photon. 5 203

    [8]

    Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002

    [9]

    Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043

    [10]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [11]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [12]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [13]

    Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282

    [14]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782

    [15]

    Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625

    [16]

    Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168

    [17]

    Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025

    [18]

    Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35

    [19]

    Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270

    [20]

    Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029

    [21]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518

    [22]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [23]

    Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801

    [24]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777

    [25]

    Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893

  • [1]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [4]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801

    [5]

    Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573

    [6]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [7]

    Katori H 2011 Nat. Photon. 5 203

    [8]

    Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002

    [9]

    Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043

    [10]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [11]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [12]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [13]

    Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282

    [14]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782

    [15]

    Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625

    [16]

    Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168

    [17]

    Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025

    [18]

    Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35

    [19]

    Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270

    [20]

    Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029

    [21]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518

    [22]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [23]

    Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801

    [24]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777

    [25]

    Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893

  • [1] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [3] 陈法喜, 赵侃, 李立波, 郭宝龙. 基于激光波长跟踪的高精度光纤时间传递. 物理学报, 2022, 71(23): 230702. doi: 10.7498/aps.71.20221460
    [4] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [5] 陈恺, 祝连庆, 牛海莎, 孟阔, 董明利. 基于1556 nm光纤激光器频率分裂效应的应力测量. 物理学报, 2019, 68(10): 104201. doi: 10.7498/aps.68.20182171
    [6] 宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才. 光纤环形谐振腔的频率锁定及其特性. 物理学报, 2019, 68(7): 074204. doi: 10.7498/aps.68.20182296
    [7] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [8] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析. 物理学报, 2016, 65(15): 154202. doi: 10.7498/aps.65.154202
    [9] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化. 物理学报, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [10] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [11] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [12] 阮军, 王叶兵, 常宏, 姜海峰, 刘涛, 董瑞芳, 张首刚. 时间频率基准装置的研制现状. 物理学报, 2015, 64(16): 160308. doi: 10.7498/aps.64.160308
    [13] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [14] 刘欢, 曹士英, 孟飞, 林百科, 方占军. 覆盖可见光波长的掺Er光纤飞秒光学频率梳. 物理学报, 2015, 64(9): 094204. doi: 10.7498/aps.64.094204
    [15] 焦东东, 高静, 刘杰, 邓雪, 许冠军, 陈玖朋, 董瑞芳, 刘涛, 张首刚. 用于光频传递的通信波段窄线宽激光器研制及应用. 物理学报, 2015, 64(19): 190601. doi: 10.7498/aps.64.190601
    [16] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [17] 曹士英, 孟飞, 林百科, 方占军, 李天初. 长时间精密锁定的掺Er光纤飞秒光学频率梳. 物理学报, 2012, 61(13): 134205. doi: 10.7498/aps.61.134205
    [18] 孟飞, 曹士英, 蔡岳, 王贵重, 曹建平, 李天初, 方占军. 光纤飞秒光学频率梳的研制及绝对光学频率测量. 物理学报, 2011, 60(10): 100601. doi: 10.7498/aps.60.100601
    [19] 李小秋, 冯晓国, 高劲松. 光学透明频率选择表面的研究. 物理学报, 2008, 57(5): 3193-3197. doi: 10.7498/aps.57.3193
    [20] 贾维国, 史培明, 杨性愉, 张俊萍, 樊国梁. 保偏光纤中相近频率传输区域的调制不稳定性. 物理学报, 2006, 55(9): 4575-4581. doi: 10.7498/aps.55.4575
计量
  • 文章访问数:  6193
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-06
  • 修回日期:  2015-01-11
  • 刊出日期:  2015-06-05

/

返回文章
返回