搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤的光学频率传递研究

刘杰 高静 许冠军 焦东东 闫露露 董瑞芳 姜海峰 刘涛 张首刚

引用本文:
Citation:

基于光纤的光学频率传递研究

刘杰, 高静, 许冠军, 焦东东, 闫露露, 董瑞芳, 姜海峰, 刘涛, 张首刚

Study of optical frequency transfer via fiber

Liu Jie, Gao Jing, Xu Guan-Jun, Jiao Dong-Dong, Yan Lu-Lu, Dong Rui-Fang, Jiang Hai-Feng, Liu Tao, Zhang Shou-Gang
PDF
导出引用
  • 随着光钟研究的发展, 光钟的稳定度和不确定度均达到10-18量级. 通过光纤可以实现光钟频率信号的高精度传输, 有望用于未来“秒”定义的复现. 演示了百公里级实验室光纤上的光学频率传递. 对于在实验室70 km光纤盘上实现的光频传递, 光纤相位噪声抑制在1-250 Hz傅里叶频率范围内均接近于光纤延时极限, 对应传输稳定度(Allan偏差)为秒级稳定度1.2×10-15, 10000 s稳定度为1.4×10-18. 实验室100 km光纤的光频传递秒级稳定度也达到了5×10-15. 提出了光纤噪声用户端补偿的方案, 可以简化星形传递网络中心站的复杂度. 在25 km光纤上演示了该传递方案, 实现的传输稳定度接近传统前置补偿传递方案.
    Optical clocks are considered as promising candidates for redefining the second in the International System of Units. Compared with microwave clocks, optical clocks are powerful tools for the fundamental research such as the constancy of the fundamental constants, the validity of Einstein’s theory of general relativity, and the predictions of quantum electrodynamics. Recently two research groups have demonstrated the optical clocks with an unprecedented precision level of 10-18, which is two orders better than the present primary frequency standard. Using two Sr optical clocks and three Cs fountain clocks, SYRTE group has demonstrated the definition of second with optical clocks.#br#For redefining the second with optical clocks in the future, the optical clocks from the remote laboratories should have a high precision and the frequency of the optical clocks need to be transferred over a long distance, with extremely high precision. Unfortunately the conventional means of frequency transfer such as two-way satellite time and frequency transfer can reach a 10-16 level in one day which is far below the requirement for an optical clocks. Various methods have been developed to transfer optical frequency signal via optical fibers. Especially a research group from Germany has achieved a frequency transfer stability of 10-19 level in hundreds of seconds with a fiber length of 1840 km.#br#We demonstrate the recent development of optical frequency transfer over a 70-km fiber spool at National Time Service Center. The measurement shows that the compensation for the fiber noise is close to the limitation induced by the fiber delay for the Fourier frequency from 1 Hz to 250 Hz. The transfer stability (Allan deviation) of the fiber link is 1.2×10-15 in 1 s averaging time, and 1.4×10-18 in 10000 s. A preliminary test of the optical frequency transfer over a 100-km spooled fiber is achieved with a stability of roughly one order worse than the 71 km result, 5×10-15 in 1 s.#br#We demonstrate a new scheme of remote compensation for optical frequency transfer via fibers against conventional local compensation method. This new scheme has the advantage of great simplification of the local site, which can find applications in massive extension of star network. The key feature is that we transfer the mixture of the round-trip signal and local reference to the remote user’s end via an auxiliary fiber. At remote site, the fiber noise is measured and compensated by AOM2 accordingly.#br#Transfer stabilities of 13×10-15 in 1 s averaging time and 4.8×10-18 in 10000 s are achieved with the remote fiber noise compensation via a 25 km fiber spool. The demonstrated transfer stability is comparable to that obtained by the local fiber noise compensation method.#br#The future star fiber network of optical frequency transfer can benefit from this method, because the simpler local setup is required and even can be shared in the central site for multitudinous remote users.
    • 基金项目: 国家自然科学基金委重大科研仪器设备研制专项(批准号:61127901)、国家自然科学基金(批准号:11273024,61025023)、国家自然科学基金青年科学基金(批准号:11403031)、中国科学院科技创新“交叉与合作团队”项目(中科院人教字(2012)119号)和中国科学院重点部署项目(批准号:KJZD-EW-W02)资助的课题.
    • Funds: Project supported by the Special Fund for Major Scientific Equipment and Instrument Development of the National Natural Science Foundation of China (Grant No. 61127901), the National Natural Science Foundation of China (Grant Nos. 11273024, 61025023), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11403031), the “Cross and Cooperative” Science and Technology Innovation Team Project of the Chinese Academy of Science, China, and the Key Deployment Project of the Chinese Academy of Sciences, China (Grant No. KJZD-EW-W02).
    [1]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [4]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801

    [5]

    Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573

    [6]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [7]

    Katori H 2011 Nat. Photon. 5 203

    [8]

    Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002

    [9]

    Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043

    [10]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [11]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [12]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [13]

    Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282

    [14]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782

    [15]

    Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625

    [16]

    Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168

    [17]

    Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025

    [18]

    Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35

    [19]

    Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270

    [20]

    Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029

    [21]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518

    [22]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [23]

    Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801

    [24]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777

    [25]

    Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893

  • [1]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [2]

    Parthey C G, Matveev A, Alnis J, Bernhardt B, Beyer A, Holzwarth R, Maistrou A, Pohl R, Predehl K, Udem T, Wilken T, Kolachevsky N, Abgrall M, Rovera D, Salomon C, Laurent P, Hänsch T W 2011 Phys. Rev. Lett. 107 203001

    [3]

    Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808

    [4]

    Shelkovnikov A, Butcher R J, Chardonnet C, Amy-Klein A 2008 Phys. Rev. Lett. 100 150801

    [5]

    Schiller S, Tino G M, Gill P, Salomon C, Sterr U, Peik E, Nevsky A, Görlitz A, Svehla D, Ferrari G, Poli N, Lusanna L, Klein H, Margolis H, Lemonde P, Laurent P, Santarelli G, Clairon A, Ertmer W, Rasel E, Mller J, Iorio L, Lämmerzahl C, Dittus H, Gill E, Rothacher M, Flechner F, Schreiber U, Flambaum V, Ni W, Liu L, Chen X, Chen J, Gao K, Cacciapuoti L, Holzwarth R, He M P, Schäfer W 2009 Exp. Astron. 23 573

    [6]

    Huntemann N, Okhapkin M, Lipphardt B, Weyers S, Tamm C, Peik E 2012 Phys. Rev. Lett. 108 090801

    [7]

    Katori H 2011 Nat. Photon. 5 203

    [8]

    Sherman J A, Lemke N D, Hinkley N, Pizzocaro M, Fox R W, Ludlow A D, Oates C W 2012 Phys. Rev. Lett. 108 153002

    [9]

    Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M, Ye J 2011 Science 331 1043

    [10]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [11]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [12]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [13]

    Gill P, Riehle F 2006 Proceedings of the 20th European Frequency and Time Forum Braunschweig, Germany, March 27-30, 2006 p282

    [14]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guéna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagórny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 2782

    [15]

    Fujieda M, Gotoh T, Nakagawa F, Tabuchi R, Aida M, Amagai J 2012 IEEE Trans. Ultrason Ferroelectr. Freq. Control 59 2625

    [16]

    Fujieda M, Kumagai M, Nagano S 2010 IEEE Trans. Ultrason Ferroelect. Freq. Control 57 168

    [17]

    Marra G, Margolis H S, Lea S N, Gill P 2010 Opt. Lett. 35 1025

    [18]

    Lopez O, Amy-Klein A, Daussy C, Chardonnet C, Narbonneau F 2008 Eur. Phys. J. D 48 35

    [19]

    Grosche G, Terra O, Predehl K, Holzwarth R, Lipphardt B, Vogt F, Sterr U, Schnatz H 2009 Opt. Lett. 34 2270

    [20]

    Jiang H, Kéfélian F, Crane S, Lopez O, Lours M, Millo J, Holleville D, Lemonde P, Chardonnet C, Amy-Klein A, Santarelli G 2008 J. Opt. Soc. Am. B 25 2029

    [21]

    Lopez O, Haboucha A, Chanteau B, Chardonnet C, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518

    [22]

    Williams P A, Swann W C, Newbury N R 2008 J. Opt. Soc. Am. B 25 1284

    [23]

    Droste S, Ozimek F, Udem T, Predehl K, Hänsch T W, Schnatz H, Grosche G, Holzwarth R 2013 Phys. Rev. Lett. 111 110801

    [24]

    Wang B, Gao C, Chen W L, Miao J, Zhu X, Bai Y, Zhang J W, Feng Y Y, Li T C, Wang L J 1994 Opt. Lett. 19 1777

    [25]

    Schediwy S W, Gozzard D, Baldwin K G H, Orr B J, Warrington R B, Aben G, Luiten A N 2013 Opt. Lett. 38 2893

计量
  • 文章访问数:  2146
  • PDF下载量:  278
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-06
  • 修回日期:  2015-01-11
  • 刊出日期:  2015-06-05

基于光纤的光学频率传递研究

  • 1. 中国科学院国家授时中心, 西安 710600;
  • 2. 中国科学院大学, 北京 100039;
  • 3. 中国科学院时间频率基准重点实验室, 西安 710600
    基金项目: 

    国家自然科学基金委重大科研仪器设备研制专项(批准号:61127901)、国家自然科学基金(批准号:11273024,61025023)、国家自然科学基金青年科学基金(批准号:11403031)、中国科学院科技创新“交叉与合作团队”项目(中科院人教字(2012)119号)和中国科学院重点部署项目(批准号:KJZD-EW-W02)资助的课题.

摘要: 随着光钟研究的发展, 光钟的稳定度和不确定度均达到10-18量级. 通过光纤可以实现光钟频率信号的高精度传输, 有望用于未来“秒”定义的复现. 演示了百公里级实验室光纤上的光学频率传递. 对于在实验室70 km光纤盘上实现的光频传递, 光纤相位噪声抑制在1-250 Hz傅里叶频率范围内均接近于光纤延时极限, 对应传输稳定度(Allan偏差)为秒级稳定度1.2×10-15, 10000 s稳定度为1.4×10-18. 实验室100 km光纤的光频传递秒级稳定度也达到了5×10-15. 提出了光纤噪声用户端补偿的方案, 可以简化星形传递网络中心站的复杂度. 在25 km光纤上演示了该传递方案, 实现的传输稳定度接近传统前置补偿传递方案.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回