搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于直调激光器和全光锁模产生微波频率梳

旷港 白光富 李源芬 徐树 黄道开 吴庆哲 陈跃刚

引用本文:
Citation:

基于直调激光器和全光锁模产生微波频率梳

旷港, 白光富, 李源芬, 徐树, 黄道开, 吴庆哲, 陈跃刚

Generation of microwave frequency combs based on directly modulated laser and all-optical mode-locking

KUANG Gang, BAI Guangfu, LI Yuanfen, XU Shu, HUANG Daokai, WU Qingzhe, CHEN Yuegang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 本文提出并验证了一种基于直调激光器与全光锁模产生微波频率梳的方案. 理论分析表明, 通过调节光纤环形腔的参数, 可对直调激光器不同动力学态下的模式实现谐波锁模或有理数谐波锁模, 从而获得梳间距可调节的频率梳. 在此基础上进行实验验证, 直调激光器在不同频率与幅度的正弦信号的调制下, 可以激发出多种典型动力学态, 这些动力学态可在环形激光器腔内实现全光锁模, 产生频率梳. 在平坦度为±5 dB的标准下, 不同动力学态作为种子信号, 可获得带宽为13, 15 GHz, 19.8, 19.5和22 GHz的频率梳; 通过直调激光器与全光锁模的有效结合, 梳间距的连续可调谐范围可达200 MHz—3 GHz; 生成的所有微波频率梳一阶梳线的单边带相位噪声测量值均低于–100 dBc/Hz@10 kHz. 理论分析和实验结果表明, 该方案调制信号的参数调节灵活, 且所生成的微波频率梳在平坦性、带宽及调谐性方面均表现出显著优势.
    In this paper, a novel scheme is proposed and experimentally demonstrated. It is based on a directly modulated laser (DML) and all-optical mode-locking for generating tunable microwave frequency combs (MFCs). Theoretical analysis reveals that harmonic or rational harmonic mode-locking can be achieved by adjusting the parameters of the fiber ring cavity, which enables the generation of MFCs with adjustable comb spacing. Based on this, experimental verification shows that the DML can be driven to exhibit various typical dynamical states under sinusoidal modulation with different frequencies and amplitudes. These states serve as seeding signals that subsequently undergo all-optical mode-locking within the ring laser cavity, resulting in the generation of MFCs. The bandwidths of the MFCs are 13, 15, 19.5, 19.8, and 22 GHz, respectively, all of which satisfy the ±5 dB flatness criterion. A continuously tunable comb-spacing range of 200 MHz to 3 GHz is attained through the effective combination of the DML and all-optical mode-locking. The single-sideband (SSB) phase noise of the first comb line remains below –100 dBc/Hz at a 10 kHz offset. Theoretical analysis and experimental results demonstrate that the modulated signals of the proposed scheme support flexible parameter tuning over a wide range. Furthermore, the generated MFCs have remarkable advantages in flatness, bandwidth, and tunability.
  • 图 1  基于DML与全光锁模产生可调谐MFC的结构图(RF, 射频信号源; DML, 直调激光器; VOA, 可变光衰减器; Cir, 光环行器; PC, 偏振控制器; SOA, 半导体光放大器; ODL, 光延迟线; TOF, 可调光滤波器; EDFA, 掺铒光纤放大器; OC, 光耦合器; ISO, 光隔离器)

    Fig. 1.  Schematic of tunable MFCs generated by DML and all-optical mode-locking. RF, radio frequency source; DML, directly modulated laser; VOA, variable optical attenuator; Cir, optical circulator; PC, polarization controller; SOA, semiconductor optical amplifier; ODL, optical delay line; TOF, tunable optical filter; EDFA, erbium-doped fiber amplifier; OC, optical coupler; ISO, optical isolator.

    图 2  全光锁模的实验验证 (a) 测量FRL的自由光谱范围(FSR); (b) 谐波锁模; (c) 二阶有理数谐波锁模; (d) 三阶有理数谐波锁模

    Fig. 2.  Experimental verification of all-optical mode-locking: (a) The measured free spectral range (FSR) of the FRL; (b) Harmonic mode-locking; (c) second-order rational harmonic mode-locking; (d) third-order rational harmonic mode-locking.

    图 3  不同动力学态作为种子信号产生MFC (a) SS; (b) CPSSH; (c) CPS2SH; (d) PP2SH; (e) PPSH(第1列为DML输出的时间序列, 第2列为DML输出的频谱, 第3列为系统输出的时间序列, 第4列为系统输出的频谱)

    Fig. 3.  The MFCs generated by using different dynamical states as the seed signals: (a) SS; (b) CPSSH; (c) CPS2SH; (d) PP2SH; (e) PPSH (Column 1 represents the time series at the DML output; Column 2 represents corresponding frequency spectrum at the DML output; Column 3 represents the time series at the system output; Column 4 represents corresponding frequency spectrum at the system output).

    图 4  不同RF信号产生的MFC的频谱 (a) 200 MHz, 插图为0—5 GHz放大图; (b) 300 MHz, 插图为0—7 GHz放大图; (c) 400 MHz, 插图为0—10 GHz放大图; (d) 500 MHz; (e) 1 GHz; (f) 1.5 GHz; (g) 2 GHz; (h) 2.5 GHz; (i) 3 GHz

    Fig. 4.  Spectra of microwave frequency combs generated by different RF signals: (a) 200 MHz, the illustration is an enlarged view from 0 to 5 GHz; (b) 300 MHz, the illustration is an enlarged view from 0 to 7 GHz; (c) 400 MHz, the illustration is an enlarged view from 0 to 10 GHz; (d) 500 MHz; (e) 1 GHz; (f) 1.5 GHz; (g) 2 GHz; (h) 2.5 GHz; (i) 3 GHz.

    图 5  MFC的相位噪声与稳定性 (a) 不同动力学态产生的MFC的相位噪声; (b)动力学态为SS与PPSH时, 产生的MFC的一阶梳线的稳定性; (c)种子信号为PPSH时, 不同梳间距的MFC在10 kHz偏移处的一阶梳线相位噪声

    Fig. 5.  The phase noise diagram of MFCs: (a) Phase noise of MFCs generated under different dynamical states; (b) the stability of the first comb line of the MFCs when the dynamical states are SS and PPSH; (c) phase noise of the first comb line at a 10 kHz offset for MFCs with various comb spacings when the seed signal is PPSH.

  • [1]

    Xu Z W, Shu X W 2019 J. Lightwave Technol. 37 3503Google Scholar

    [2]

    Shin J, Ryu Y, Miri M A, Shim S B, Choi H, Alù A, Suh J, Cha J 2022 Nano Lett. 22 5459Google Scholar

    [3]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [4]

    刘琪华, 梅佳雪, 王金栋, 张福民, 曲兴华 2024 物理学报 73 044204Google Scholar

    Liu Q H, Mei J X, Wang J D, Zhang F M, Qu X H 2024 Acta Phys. Sin. 73 044204Google Scholar

    [5]

    Picqué N, Hänsch T W 2019 Nat. Photonics 13 146Google Scholar

    [6]

    Wang S P, Chen Z, Li T F 2021 Chin. Phys. B 30 048501Google Scholar

    [7]

    Wu S S, Liu Y L, Liu Q C, Wang S P, Chen Z, Li T F 2022 Phys. Rev. Lett. 128 153901Google Scholar

    [8]

    Wu D X, Xue X X, Li S Y, Zheng X P, Xiao X D, Zha Y, Zhou B K 2017 Opt. Express 25 14516Google Scholar

    [9]

    Gao S, Gao Y, He S 2010 Electron. Lett. 46 236Google Scholar

    [10]

    麻艳娜, 黄添添, 王文睿, 宋开臣 2018 物理学报 67 238401Google Scholar

    Ma Y N, Huang T T, Wang W R, Song K C 2018 Acta Phys. Sin. 67 238401Google Scholar

    [11]

    Yang B, Zhao H Y, Cao Z Z, Yang S, Zhai Y R, Ou J, Chi H 2020 Opt. Express 28 33220Google Scholar

    [12]

    Wang Z Y, Wu R H, Li B, Guo J P, Liu H Z 2023 Opt. Laser Technol. 162 109253Google Scholar

    [13]

    Tang H Y, Kong Z X, Li F P, Chen X Y, Li M, Zhu N H, Li W 2024 J. Lightwave Technol. 42 5522Google Scholar

    [14]

    Chan S C, Xia G Q, Liu J M 2007 Opt. Lett. 32 1917Google Scholar

    [15]

    周沛, 张仁恒, 朱尖, 李念强 2022 物理学报 71 214204Google Scholar

    Zhou P, Zhang R H, Zhu J, Li N Q 2022 Acta Phys. Sin. 71 214204Google Scholar

    [16]

    Juan Y S, Lin F Y 2009 Opt. Lett. 34 1636Google Scholar

    [17]

    Zhuang J P, Li X Z, Li S S, Chan S C 2016 Opt. Lett. 41 5764Google Scholar

    [18]

    Li Y N, Fan L, Xia G Q, Wu Z M 2017 IEEE Photonics J. 9 5502607

    [19]

    Zhao W, Mao Y F, Li Y B, Chen G C, Lu D, Kan Q, Zhao L J 2020 IEEE Photonics Technol. Lett. 32 1407Google Scholar

    [20]

    Gao T C, Zhang Y L, Li J C, Li S H, Zhang Z Y, Zhang S J, Liu Y 2024 Opt. Laser Technol. 170 110295Google Scholar

    [21]

    Ahmed M, El-Lafi A 2008 Opt. Laser Technol. 40 809Google Scholar

    [22]

    Das P, Kaechele W, Theimer J P, Pirich A R 1997 Photonic Process. Technol. Appl. 3075 21

    [23]

    Wu C, Dutta N K 2000 IEEE J. Quantum Electron. 36 145Google Scholar

    [24]

    Zi Y J, Jiang Y, Ma C, Bai G F, Jia Z R, Wu T W, Huang F Q 2015 IEEE Photonics J. 7 1501309

    [25]

    Hemery E, Chusseau L, Lourtioz J M 1990 IEEE J Quantum Electron. 26 633Google Scholar

  • [1] 旷港, 白光富, 李源芬, 徐树, 黄道开, 吴庆哲, 陈跃刚. 基于直调激光器和全光锁模产生微波频率梳. 物理学报, doi: 10.7498/aps.74.20251232
    [2] 贺亮, 彭雪芳, 沈小雨, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 低重复频率被动锁模半导体碟片激光器. 物理学报, doi: 10.7498/aps.73.20240441
    [3] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, doi: 10.7498/aps.72.20221709
    [4] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器. 物理学报, doi: 10.7498/aps.72.20222297
    [5] 周康, 黎华, 万文坚, 李子平, 曹俊诚. 太赫兹量子级联激光器频率梳的色散. 物理学报, doi: 10.7498/aps.68.20190217
    [6] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, doi: 10.7498/aps.68.20182224
    [7] 杨超, 顾澄琳, 刘洋, 王超, 李江, 李文雪. 双重复频率锁模Yb:YAG陶瓷激光器. 物理学报, doi: 10.7498/aps.67.20172345
    [8] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, doi: 10.7498/aps.67.20172503
    [9] 麻艳娜, 黄添添, 王文睿, 宋开臣. 基于双环混频光电振荡器的可调谐微波频率梳产生. 物理学报, doi: 10.7498/aps.67.20181582
    [10] 令维军, 夏涛, 董忠, 刘勍, 路飞平, 王勇刚. 基于WS2可饱和吸收体的调Q锁模Tm,Ho:LLF激光器. 物理学报, doi: 10.7498/aps.66.114207
    [11] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, doi: 10.7498/aps.64.194205
    [12] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, doi: 10.7498/aps.64.064206
    [13] 董信征, 于振华, 田金荣, 李彦林, 窦志远, 胡梦婷, 宋晏蓉. 147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器. 物理学报, doi: 10.7498/aps.63.034202
    [14] 徐中巍, 张祖兴. 全正色散多波长被动锁模耗散孤子掺镱光纤激光器. 物理学报, doi: 10.7498/aps.62.104210
    [15] 刘华刚, 黄见洪, 翁文, 李锦辉, 郑晖, 戴殊韬, 赵显, 王继扬, 林文雄. 高功率全正色散锁模掺Yb3+双包层光纤飞秒激光器. 物理学报, doi: 10.7498/aps.61.154210
    [16] 吴学健, 尉昊赟, 朱敏昊, 张继涛, 李岩. 基于飞秒光频梳的双频He-Ne激光器频率测量. 物理学报, doi: 10.7498/aps.61.180601
    [17] 欧阳春梅, 柴路, 赵慧, 胡明列, 宋有建, 王清月. 滤波位置相关的全正色散掺Yb3+锁模光纤激光器的实验研究. 物理学报, doi: 10.7498/aps.59.3936
    [18] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, doi: 10.7498/aps.58.6992
    [19] 王勇刚, 马骁宇, 付圣贵, 范万德, 李 强, 袁树忠, 董孝义, 宋晏蓉, 张志刚. 离子注入GaAs实现双包层掺镱光纤激光器被动调Q锁模. 物理学报, doi: 10.7498/aps.53.1810
    [20] 李福利. 快开关调Q的四能级激光器的动力学. 物理学报, doi: 10.7498/aps.27.137
计量
  • 文章访问数:  36
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-08
  • 修回日期:  2025-10-27
  • 上网日期:  2026-01-04

/

返回文章
返回