Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock

Kong De-Huan Guo Feng Li Ting Lu Xiao-Tong Wang Ye-Bing Chang Hong

Citation:

Evaluation of systematic uncertainty for transportable 87Sr optical lattice clock

Kong De-Huan, Guo Feng, Li Ting, Lu Xiao-Tong, Wang Ye-Bing, Chang Hong
PDF
HTML
Get Citation
  • Transportable optical clocks have broad applications in scientific research and engineering. Accurate evaluation of systematic uncertainty for the transportable 87Sr optical lattice clock is a prerequisite for the practical realization of the optical clock. Four main frequency shifts of the 87Sr optical lattice clock are measured, i.e. blackbody-radiation (BBR) shift, collision shift, lattice alternating current (AC) Stark shift, and second-order Zeeman shift. Firstly, by measuring the temperature distribution on the surface of the magneto-optical trap cavity and analyzing the influence of different heat sources on atomic cloud, the BBR shift correction is measured to be 50.4 × 10–16 Hz with an uncertainty of 5.1 × 10–17. Secondly, the time-interleaved self-comparison method is used under high and low atom density condition to evaluate the collision shift of the system. The correction of collision shift is 4.7 × 10–16 with an uncertainty of 5.6 × 10–17. Thirdly, the lattice AC Stark shift is evaluated by the time-interleaved self-comparison method. By measuring the dependence of the lattice AC Stark shift on the wavelength of the lattice light, the magic wavelength is measured to be 368554393(78) MHz. As a result, the lattice AC Stark shift correction is 3.0 × 10–16 with an uncertainty of 2.2 × 10–16. Finally, using the time-interleaved self-comparison technology, the second-order Zeeman frequency shift is evaluated by measuring the fluctuation of the difference in center frequency between the ${m_{\text{F}}} = + {9 / 2} \to {m_{\text{F}}} = + {9 / 2}$ polarization spectrum and ${m_{\text{F}}} = - {9 / 2} \to {m_{\text{F}}} = - {9 / 2}$ polarization spectrum. The correction of second-order Zeeman shift is calculated to be 0.7 × 10–16, and corresponding uncertainty is 0.2 × 10–17. Experimental results indicate that the frequency shift correction due to the blackbody radiation is the largest, while the uncertainty caused by the lattice AC Stark effect is the largest in the evaluated shifts. The systematic shift is 58.8 × 10–16, the total uncertainty is 2.3 × 10–16. In the next work, the magneto-optical trap cavity will be placed in a blackbody-radiation cavity to reduce the blackbody-radiation shift. The uncertainty of the collision shift will be reduced by increasing the beam waist of the lattice and reducing the potential well depth of the lattice, which will reduce the density of atoms. What is more, the light source for the optical lattice after spectral filtering will be measured by an optical frequency comb locked to the hydrogen clock signal to reduce the uncertainty of the lattice AC Stark frequency shift. The systematic uncertainty is expected to be on the order of 10–17. The evaluation of the systematic uncertainty for the transportable 87Sr optical lattice clock lays the foundation for the practical application.
      Corresponding author: Wang Ye-Bing, wangyebing@ntsc.ac.cn ; Chang Hong, changhong@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775220, 11803042), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant No. QYZBD-SSW-JSC004), and the Youth Innovation Promotion Association CAS (Grant No. 2019400)
    [1]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schimidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [2]

    Rosenband T, Hume D B, Schmidt P O, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [3]

    Diddams S A 2001 Science 293 825Google Scholar

    [4]

    Dube P, Madej A A, Zhou Z C, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B G, MacNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [6]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, MacNally R L, Souderhouse L, Robinson J M, Zhang W, Bloom B G, Ye J 2017 Science 358 90Google Scholar

    [7]

    Poli N, Schioppo M, Vogt S, Falke S, Sterr U, Lisdat C, Tino G M 2014 Appl. Phys. B 117 1107Google Scholar

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601Google Scholar

    [9]

    Ohmae N, Sakama S, Katori H 2019 Electr. Commun. JPN 102 43Google Scholar

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhou Q, Xiong Z X, He L X, Lü B L 2017 Chin. Phys. Lett. 34 020601Google Scholar

    [11]

    周敏, 徐信业 2016 物理 45 431Google Scholar

    Zhou M, Xu X Y 2016 Physics 45 431Google Scholar

    [12]

    管桦, 黄垚, 李承斌, 高克林 2018 物理学报 67 164202Google Scholar

    Guan H, Huang Y, Li C B, Gao K L 2018 Acta Phys. Sin. 67 164202Google Scholar

    [13]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [16]

    Paul S, Swanson T B, Hanssen J, Taylor J 2017 Metrologia 54 247Google Scholar

    [17]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [18]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [19]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [20]

    Lopez O, Haboucha A, Chanteau B, Chardonnet Ch, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [21]

    Bercy A, Lopez O, Pottie P E, Amy-Klein A 2016 Appl. Phys. B 122 189Google Scholar

    [22]

    Mcgrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [23]

    Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Fred N B, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F, Calonico D 2018 Nat. Phys. 14 437Google Scholar

    [24]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459Google Scholar

    [25]

    Zhang S, Zhang X, Cui J, Jiang Z J, Shang H S, Zhu C W, Chang P Y, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106Google Scholar

    [26]

    Koller S B, Grotti J, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2017 Phys. Rev. Lett. 118 073601Google Scholar

    [27]

    Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H, Huang X 2017 Appl. Phys. B 123 112Google Scholar

    [28]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [29]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [30]

    Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B, Chang H 2020 Chin. Phys. B 29 070602Google Scholar

    [31]

    Middlemann T, Falkes S, Listat C, Sterr U 2012 Phys. Rev. Lett. 109 263004Google Scholar

    [32]

    李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 093701Google Scholar

    Li T, Lu X T, Zhang Q, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 093701Google Scholar

    [33]

    Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2018 Phys. Rev. A 98 053443Google Scholar

    [34]

    Bureau International des Poids et Mesures (BIPM) Consultative Committee for Time and Frequency (CCTF) Report of the 21st Meeting (June 8-9, 2017) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF21.pdf

    [35]

    Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [36]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [37]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [38]

    林弋戈, 方占军 2018 物理学报 67 160604Google Scholar

    Lin Y G, Fang Z J 2018 Acta Phys. Sin. 67 160604Google Scholar

    [39]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [40]

    Bloom B J, Nicholson T L, William J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L 2014 Nature 506 71Google Scholar

    [41]

    Bailard X, Fouché M, Targat R L, Westergaard P G, Lecallier A, Coq Y L, Rovera G D, Bize S, Lemonde P 2007 Opt. Lett. 32 1812Google Scholar

    [42]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, L Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

  • 图 1  可搬运87Sr光晶格钟的物理系统(PMT, 光电倍增管; EMCCD, 电子倍增电荷耦合相机)

    Figure 1.  Physical system of the transportable strontium optical lattice clock (PMT, photo-multiplier tube; EMCCD, electron-multiplying charge coupled device)

    图 2  磁光阱腔体上测量点的分布示意图

    Figure 2.  Distribution of the temperature points on the magneto-optical trap cavity.

    图 3  磁光阱腔体各测温点的温度波动

    Figure 3.  Temperature fluctuations at the temperature points on the magneto-optical trap cavity

    图 4  碰撞频移的测试结果

    Figure 4.  Measurement for the collision shift

    图 5  单次高低原子密度自比对的阿伦偏差

    Figure 5.  The Allan deviation obtained by the time-interleaved self-comparison method between high and low atomic density

    图 6  晶格光频移系数随晶格光频率的变化

    Figure 6.  Clock sensitivity to lattice wavelength.

    图 7  钟跃迁极化峰间距的测量结果

    Figure 7.  Frequency gap between two different spin-polarized peaks.

    表 1  可搬运87Sr光晶格钟的系统不确定度评估

    Table 1.  Uncertainty budget for the transportable strontium optical lattice clock.

    频移项相对频移修正/10–16相对不确定度/10–17
    黑体辐射50.45.1
    碰撞4.75.6
    晶格光交流斯塔克3.022.1
    二阶塞曼0.70.2
    钟激光交流斯塔克01.0
    线牵引01.0
    总和58.823.4
    DownLoad: CSV
  • [1]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schimidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [2]

    Rosenband T, Hume D B, Schmidt P O, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J, Bergquist J C 2008 Science 319 1808Google Scholar

    [3]

    Diddams S A 2001 Science 293 825Google Scholar

    [4]

    Dube P, Madej A A, Zhou Z C, Bernard J E 2013 Phys. Rev. A 87 023806Google Scholar

    [5]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B G, MacNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [6]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, MacNally R L, Souderhouse L, Robinson J M, Zhang W, Bloom B G, Ye J 2017 Science 358 90Google Scholar

    [7]

    Poli N, Schioppo M, Vogt S, Falke S, Sterr U, Lisdat C, Tino G M 2014 Appl. Phys. B 117 1107Google Scholar

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601Google Scholar

    [9]

    Ohmae N, Sakama S, Katori H 2019 Electr. Commun. JPN 102 43Google Scholar

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhou Q, Xiong Z X, He L X, Lü B L 2017 Chin. Phys. Lett. 34 020601Google Scholar

    [11]

    周敏, 徐信业 2016 物理 45 431Google Scholar

    Zhou M, Xu X Y 2016 Physics 45 431Google Scholar

    [12]

    管桦, 黄垚, 李承斌, 高克林 2018 物理学报 67 164202Google Scholar

    Guan H, Huang Y, Li C B, Gao K L 2018 Acta Phys. Sin. 67 164202Google Scholar

    [13]

    Huang Y, Guan H, Zeng M, Tang L, Gao K 2019 Phys. Rev. A 99 011401Google Scholar

    [14]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [15]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [16]

    Paul S, Swanson T B, Hanssen J, Taylor J 2017 Metrologia 54 247Google Scholar

    [17]

    Derevianko A, Pospelov M 2014 Nat. Phys. 10 933Google Scholar

    [18]

    Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L, Ye J 2016 Phys. Rev. D 94 124043Google Scholar

    [19]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630Google Scholar

    [20]

    Lopez O, Haboucha A, Chanteau B, Chardonnet Ch, Amy-Klein A, Santarelli G 2012 Opt. Express 20 23518Google Scholar

    [21]

    Bercy A, Lopez O, Pottie P E, Amy-Klein A 2016 Appl. Phys. B 122 189Google Scholar

    [22]

    Mcgrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H, Ludlow A D 2018 Nature 564 87Google Scholar

    [23]

    Grotti J, Koller S, Vogt S, Häfner S, Sterr U, Lisdat C, Denker H, Voigt C, Timmen L, Rolland A, Fred N B, Margolis H S, Zampaolo M, Thoumany P, Pizzocaro M, Rauf B, Bregolin F, Tampellini A, Barbieri P, Zucco M, Costanzo G A, Clivati C, Levi F, Calonico D 2018 Nat. Phys. 14 437Google Scholar

    [24]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459Google Scholar

    [25]

    Zhang S, Zhang X, Cui J, Jiang Z J, Shang H S, Zhu C W, Chang P Y, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106Google Scholar

    [26]

    Koller S B, Grotti J, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2017 Phys. Rev. Lett. 118 073601Google Scholar

    [27]

    Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H, Huang X 2017 Appl. Phys. B 123 112Google Scholar

    [28]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [29]

    Wang Y B, Yin M J, Ren J, Xu Q F, Lu B Q, Han J X, Guo Y, Chang H 2018 Chin. Phys. B 27 023701Google Scholar

    [30]

    Kong D H, Wang Z H, Guo F, Zhang Q, Lu X T, Wang Y B, Chang H 2020 Chin. Phys. B 29 070602Google Scholar

    [31]

    Middlemann T, Falkes S, Listat C, Sterr U 2012 Phys. Rev. Lett. 109 263004Google Scholar

    [32]

    李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 093701Google Scholar

    Li T, Lu X T, Zhang Q, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 093701Google Scholar

    [33]

    Origlia S, Pramod M S, Schiller S, Singh Y, Bongs K, Schwarz R, Al-Masoudi A, Dörscher S, Häfner S, Sterr U, Lisdat C 2018 Phys. Rev. A 98 053443Google Scholar

    [34]

    Bureau International des Poids et Mesures (BIPM) Consultative Committee for Time and Frequency (CCTF) Report of the 21st Meeting (June 8-9, 2017) to the International Committee for Weights and Measures https://www.bipm.org/utils/common/pdf/CC/CCTF/CCTF21.pdf

    [35]

    Lemke N D, von Stecher J, Sherman J A, Rey A M, Oates C W, Ludlow A D 2011 Phys. Rev. Lett. 107 103902Google Scholar

    [36]

    卢晓同, 李婷, 孔德欢, 王叶兵, 常宏 2019 物理学报 68 233401Google Scholar

    Lu X T, Li T, Kong D H, Wang Y B, Chang H 2019 Acta Phys. Sin. 68 233401Google Scholar

    [37]

    Katori H, Takamoto M, Pal’chikov V G, Ovsiannikov V D 2003 Phys. Rev. Lett. 91 173005Google Scholar

    [38]

    林弋戈, 方占军 2018 物理学报 67 160604Google Scholar

    Lin Y G, Fang Z J 2018 Acta Phys. Sin. 67 160604Google Scholar

    [39]

    Westergaard P G, Lodewyck J, Lorini L, Lecallier A, Burt E A, Zawada M, Millo J, Lemonde P 2011 Phys. Rev. Lett. 106 210801Google Scholar

    [40]

    Bloom B J, Nicholson T L, William J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L 2014 Nature 506 71Google Scholar

    [41]

    Bailard X, Fouché M, Targat R L, Westergaard P G, Lecallier A, Coq Y L, Rovera G D, Bize S, Lemonde P 2007 Opt. Lett. 32 1812Google Scholar

    [42]

    Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, L Tew W L, Ye J, Kennedy C J 2019 Metrologia 56 065004Google Scholar

  • [1] Lou Yan-Zhi, Li Yu-Wu. Evaluation of uncertainty in measuring thin crystal thickness and extinction distance by Kossel-Möllenstedt pattern analysis. Acta Physica Sinica, 2022, 71(14): 146803. doi: 10.7498/aps.71.20212271
    [2] Chen Ze-Rui, Liu Guang-Cun, Yu Zhen-Hua. Collision clock shift of two Fermi atoms in harmonic potentials. Acta Physica Sinica, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [3] Guan Yong, Liu Dan-Dan, Wang Xin-Liang, Zhang Hui, Shi Jun-Ru, Bai Yang, Ruan Jun, Zhang Shou-Gang. Investigation of cold atom collision frequency shift measured by rapid adiabatic passage in cesium fountain clock. Acta Physica Sinica, 2020, 69(14): 140601. doi: 10.7498/aps.69.20191800
    [4] Sun Chen, Feng Yu-Tao, Fu Di, Zhang Ya-Fei, Li Juan, Liu Xue-Bin. A propagation of interferogram signal-to-noise (SNR) and phase uncertainty in Doppler asymmetric spatial heterodyne spectrometer. Acta Physica Sinica, 2020, 69(1): 014202. doi: 10.7498/aps.69.20191179
    [5] Lu Xiao-Tong, Li Ting, Kong De-Huan, Wang Ye-Bing, Chang Hong. Measurement of collision frequency shift in strontium optical lattice clock. Acta Physica Sinica, 2019, 68(23): 233401. doi: 10.7498/aps.68.20191147
    [6] Wang Qian, Liu Wei-Guo, Gong Lei, Wang Li-Guo, Li Ya-Qing. Determination of carrier bulk lifetime and surface recombination velocity in semiconductor from double-wavelength free carrier absorption. Acta Physica Sinica, 2018, 67(21): 217201. doi: 10.7498/aps.67.20181509
    [7] Wang Qian, Wei Rong, Wang Yu-Zhu. Atomic fountain frequency standard: principle and development. Acta Physica Sinica, 2018, 67(16): 163202. doi: 10.7498/aps.67.20180540
    [8] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yang Chen-Guang, Chen Bing, Xia Hui-Hui, Wei Min, Chen Xiang, Yao Lu, Li Hang, Fan Xue-Li, Hu Jia-Yi. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1. Acta Physica Sinica, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [9] Kou Tian, Wang Hai-Yan, Wang Fang, Wu Xue-Ming, Wang Ling, Xu Qiang. Ranging characteristic and uncertainty of airborne multi-pulse laser. Acta Physica Sinica, 2015, 64(12): 120601. doi: 10.7498/aps.64.120601
    [10] Shao Ke-Yong, Ma Yong-Jing, Wang Ting-Ting, Liu Yuan-Hong, Yang Li, Gao Hong-Yu. Synchronization with different structures of uncertain chaotic system. Acta Physica Sinica, 2013, 62(2): 020514. doi: 10.7498/aps.62.020514
    [11] Shang Wan-Li, Zhu Tuo, Kuang Long-Yu, Zhang Wen-Hai, Zhao Yang, Xiong Gang, Yi Rong-Qing, Li San-Wei, Yang Jia-Min. Uncertainty analysis of the measured spectrum obtained using transmission grating spectrometer. Acta Physica Sinica, 2013, 62(17): 170602. doi: 10.7498/aps.62.170602
    [12] Liu Li-Hui, Zou Hong-Xin, Liu Qu, Li Xi. Blackbody-radiation shift in a 199Hg+ ion optical frequency standard. Acta Physica Sinica, 2012, 61(10): 103101. doi: 10.7498/aps.61.103101
    [13] Zhang Wei-Hong, Niu Zhong-Ming, Wang Feng, Gong Xiao-Bo, Sun Bao-Hua. Uncertainties of nucleo-chronometers from nuclear physics inputs. Acta Physica Sinica, 2012, 61(11): 112601. doi: 10.7498/aps.61.112601
    [14] Liu Zi-Long, Chen Rui, Liao Ning-Fang, Li Zai-Qing, Wang Yu. Greatly enhanced visual density measurement level of the national standard densitometer. Acta Physica Sinica, 2012, 61(23): 230601. doi: 10.7498/aps.61.230601
    [15] Luo Yong-Jian, Yu Qian, Zhang Wei-Dong. Research on impulsive synchronization approach ofparameter uncertain hyperchaotic systems with time-delay. Acta Physica Sinica, 2011, 60(11): 110504. doi: 10.7498/aps.60.110504
    [16] Chen Bo-Lun, Yang Zheng-Hua, Cao Zhu-Rong, Dong Jian-Jun, Hou Li-Fei, Cui Yan-Li, Jiang Shao-En, Yi Rong-Qing, Li San-Wei, Liu Shen-Ye, Yang Jia-Min. Reflectivity uncertainty analysis of planar mirror calibration in BSRF. Acta Physica Sinica, 2010, 59(10): 7078-7085. doi: 10.7498/aps.59.7078
    [17] Lü Ling, Li Yan. Lag synchronization in uncertain autocatalytic reaction-diffusion chaotic systems. Acta Physica Sinica, 2009, 58(1): 131-138. doi: 10.7498/aps.58.131
    [18] Hu Kun-Ming. The equal probability comparison method of determining the equivalent-electron Young basis. Acta Physica Sinica, 2008, 57(10): 6074-6080. doi: 10.7498/aps.57.6074
    [19] Luo Zhi-Yong, Yang Li-Feng, Chen Yun-Chang. Phase-shift algorithm research based on multiple-beam interference principle. Acta Physica Sinica, 2005, 54(7): 3051-3057. doi: 10.7498/aps.54.3051
    [20] DONG TAI-QIAN. REDUCTION OF LIGHT SHIFT IN Rb87 FREQUENCY STANDARD USING PULSE SAMPLING OPTICAL DETECTION METHOD. Acta Physica Sinica, 1981, 30(1): 1-11. doi: 10.7498/aps.30.1
Metrics
  • Abstract views:  6976
  • PDF Downloads:  191
  • Cited By: 0
Publishing process
  • Received Date:  27 July 2020
  • Accepted Date:  07 September 2020
  • Available Online:  22 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回